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Abstract 
 
Ginsburgh and Zang [1] consider a revenue sharing problem for the museum pass program, in which several 
museums jointly offer museum passes that allow visitors an unlimited access to participating museums in a 
certain period of time. We consider a cost sharing problem that can be regarded as the dual problem of the 
above revenue sharing problem. We assume that all museums are public goods and have various (e.g., ser-
vice) costs. These costs must be shared by museum visitors. We propose a cost sharing method and provide 
an axiomatic characterization of the method. We then define a game for the problem and show that the cost 
sharing method is the Shapley value of the game. We also provide a comparative statics analysis for both the 
Shapley value of the museum pass game and the Shapley value for the cost sharing game when the number 
of museums and/or the number of visitors change. 
 
Keywords: Cost Sharing, Shapley Value 

1. Introduction 
 
Ginsburgh and Zang [1] consider a revenue sharing pro- 
blem for museums participating in a museum pass pro-
gram. In the museum pass program, museum passes pro-
vide visitors an unlimited access to participating mu- 
seums in a certain period of time. The total revenue from 
sales of museum passes must be shared among the par-
ticipating museums. Since some museums may have 
more visitors than others, museums with more visitors 
should share more revenue. In general, each visitor may 
visit more than one museum. Thus, one cannot simply 
distribute the total revenue to museums in proportion to 
the number of visitors each museum has had. Ginsburgh 
and Zang define a cooperative game in which museums 
team up in offering the access passes. They apply the 
Shapley [2] value to allocate the joint income from the 
sale of passes among the museums. 

We consider a cost sharing problem that can be re-
garded as the dual problem of the above revenue sharing 
problem. We assume that all museums are public goods 
and have various costs. These costs must be shared by 
museum users. Thus, museum users (customers) pay 
different fees for the services provided by different mu-
seums. This is in contrast to the museum pass program in 
which users pay the same fee for a pass. In the museum 
pass program, some users may subsidize for some other 
users. Here, we require that different users pay different 

fees depending on their different uses of the services 
provided by different museums. 

We propose a cost sharing method for the cost sharing 
problem. The method simply allocates each museum’s 
cost equally among the visitors who have visited the 
museum. We first provide an axiomatic characterization 
of the method by the axioms of Additivity, Anonymity 
and No Blind Cost. Additivity and Anonymity are the 
standard axioms in the cost sharing literature ([2,3]). No 
Blind Cost says that if the museums visited by a visitor 
all have zero costs, then this visitor shouldn't pay any 
cost. We then define a game for the cost sharing problem. 
The game can be considered as the dual game of the 
museum pass game. We show that the cost sharing 
method is the Shapley value of the game. 

We also provide a comparative statics analysis for 
both the Shapley value of the museum pass game and the 
Shapley value of the cost sharing game when the number 
of museums and/or the number of visitors change. For 
the museum pass game, we demonstrate by an example 
that adding one more museum will decrease all muse-
ums’ revenue if there is no increase in the number of 
visitors. But if the additional museum brings additional 
visitors to the museum itself as well as some other mu-
seums, then it is possible that some museums are better 
off and some are worse off. For the cost sharing game, 
we demonstrate by using a similar example that adding 
one more museum will increase all visitors’ cost if there 
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is no increase in the number of visitors. But if the addi-
tional museum brings additional visitors to the museum 
itself as well as some other museums, then it is possible 
that some visitors are better off and some are worse off. 

c1 

c2 

In general, our model can be used to deal with cost 
sharing problems where a finite number of users use a 
finite number of production functions (or service facili-
ties). There are many cost sharing problems involving 
two groups of agents in which each agent from the first 
group obtains services from some agents in the second 
group. And the total service costs incurred to the second 
group must be shared among the agents in the first group 
(see Moulin and Laigret [4]). 

c3 

 
2. The Model and Proposed Method 
 
Let 1, ,M m   denote the set of customers (e.g., mu-
seum users), and let  1, ,N  

1 , , nc

j M

n  denote the set of service 
providers (e.g., museums), where  are two positive 
integers. Let  be the cost vector, where 

,  is the cost incurred by service provider . 

nm,




0 i N

C c

ic  i
For each customer , let K j  denote the set 

of service providers whose services were utilized by 
customer . Denote  such a mapping from j K M  to 

. For each service provider , let 2N iN  1K i  be the 
set of customers who use the service of provider . De-
note 

i
1K   such an inverse of . Assume that for each 

service provider i , 
K

N  K i1   . Denote  the 
set of all possible mappings from 


M  to . A prob-

lem is a list 
2N

 ,, ,M N K C  where  and K  nRC  . 
A solution is a vector  , ,  m

m1x x x  R   such that. 

j i
j M i N

x c
 

   

A method is a mapping that assigns to each problem 
 , , , M N K C  a solution  , , , x M N K C . Except Sec-
tion 5, through out the paper, we fix the sets M  and 

. Thus, we simply call N  ,K C  a problem and 
 ,x K C  a solution. 
In this paper, we propose and study the following 

method which allocates each service provider's cost 
equally to the customers who have utilized that service: 

 
  

1
, ,i

j
i K j

c
1, ,x K C j m

K i


             (1) 

where  1K i
 is the number of elements in the set 

 1K i
. 

Example 1. In Figure 1, there are three customers 
1,2,3, and three service providers 1,2,3. Customer 1 uses 
all three service providers, customer 2 uses only service 
providers 1 and 2 and customer 3 uses service providers 
2 and 3. Suppose that service providers’ costs are given 
by the vector .  1 2 3, ,C c c c

 
Figure 1. The left side denotes the three customers. The right 
side denotes the three service providers along with their costs, 
respectively. 
 

Then the cost sharing method (1) gives the following 
solution:  

1 1 2

1 1 1
,

2 3 2 3x c c c    

2 1

1 1
,

2 3 2x c c   

3 2

1 1
,

3 2 3x c c   

 
3. Axiomatic Characterization of the Method 
 
In this section, we provide an axiomatic characterization 
of the method (1). For this purpose, we require the fol-
lowing axioms. 

Additivity: Fix K . For any  1 1 1
1 , , n

nC c c R   and 

 2 2 2
1 , , n

nC c c R   , we have    1 2 1, ,j jx K C C x K C   

 2,jx K C  for all j M . 

Additivity is a classical axiom in the cooperative game 
theory [2] and in the cost-sharing literature [3]. In the 
present context of museum cost sharing problem, we can 
provide the following interpretation. If museums’ costs 
are split into two parts, for example, the capital cost and 
the operating cost, and the cost allocation of each part of 
these costs is computed, then the sum of these two cost 
allocations would be equal to the cost allocation obtained 
by applying the method to the unsplit total costs. 

A permutation   of 1, , M M   is a one-to-one 
mapping from M  to M , i.e., : M M   and for all 
,i j M ,     i j   if and only i j . 

Anonymity: For any permutation   of M  and any 
nC R ,  

     , ,x K C x K C   

where     , ,K C K  C   ,   K i K i  , and 
   jj
x x m  for x R . 
In words, Anonymity requires that the costs allocated 

to the customers do not depend on their names. 
No Blind Cost: For any , if for all j M  i K j , 

0ic  , then  , 0jx K C  . 
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In words, for any customer, if the costs of all museums 
he or she has visited are all zeros, then the customer 
shouldn’t pay any cost. In other words, there are no 
cross-subsidizations. 

Theorem 1 The method defined in (1) is the only 
method that satisfies the axioms of Additivity, Anonymity, 
and No Blind Cost. 

Proof: It is easy to check that the method (1) satisfies 
the axioms of Additivity, Anonymity, and No Blind 
Cost. 

Now we show that the method (1) is the only method 
that satisfies the three axioms. Suppose that a cost sharing 
method   satisfies the three axioms. Fix an arbitrary ,  K
and a cost vector . For any , let 

 where 1 is the th component of 
the -dimensional vector . Note that 

 1, nC c c 
, ,0

iC

  1, ,i n 
0, ,0,1,0iC  

n
i

 1K i

i

 1\ K i

 is the 
set of customers that are served by museum  which has 
one unit cost in  No Blind Cost and Anonymity, we 
have  for all , and 

iC . By
0 , i

j K C


j M
  1, 1i /j K C  K  i



  for all . 1j K  i
Now for any given , it can be uniquely written  nRC 

icas . By Additivity,1 we have   1, , n ii N
C c c C


 

 
       

 

1 1
\

, 0

, ,i

i i
j

i N K j i K j i K j

i i
j i j

i N i N

c c
K C

K i K

K c C c K C



 

 
  

 

  

     
 

  

 

i
 

for all . j M

This completes the proof of the theorem. 
Q.E.D. 

 
4. The Game and the Shapley Value 
 
We now show that the method (1) defined above is, in 
fact, the Shapley value of the following game  c   that 
is associated to the problem  ,K C : 

 
 

,i
i K S

c S c S M


  ,               (2) 

Where    j SK S K 

S . 

j , i.e., the set of service 

providers whose services have been utilized by the cus-
tomers in 

Recall that the Shapley value of a game  c   is de-
fined by 

          
:

1 ! !
\ , 1, , . (3) 

!j
S M j S

S m S
c c S c S j j m

m


 

 
     

Proposition 1. The Shapley value of the cost game 

 c   defined in (2) coincides with the method (1).  
Proof. For any i N , consider the unit vector in  nR

 0, ,0,1,0, ,0 ,C   i  

where 1 is the -th component of the vector . The 
corresponding cost game defined by (2) is given by 

i iC

   1
.

0 ,
i if K S i

c S S M
otherwise


 


        (4) 

Clearly, all agents in  1\M K i M   are dummy 
agents in the game  and all agents in ic  1K i

c
 are 

symmetric. Thus the Shapley value of the game  is 
given by  

i

   
 1

1

1
,

0,

i
j K i

K ic

otherwise






  



            (5) 

for all j M . 
Since the cost vectors,    1, ,iC i n 

nR
 , form a ba-

sis of , for any nR C 
C

, it can be uniquely written  

as i
ii N

c


C   . By the definition of the cost game,  

for S M   , we have  

 
   

 
 

i
k i k

k K S k K S i N

i i
i ik

i N k K S i N

c S c c C

c C c c

  

  

       

 
       

 

  

   S

 

where  kC  is the th component of the vector . 
Because the Shapley value satisfies Additivity (and thus, 
Linearity, see footnote 1), we have 

k C

   
    

  

1
\

1

0i i
j i j

i N i N K j i K j

i

i K j

c
c c c

K i

c

K i

 


  




   



  


 

For all j M . This completes the proof of the 
proposition. 

Q.E.D. 
 
5. Comparative Statics Analysis 
 
Now we consider the effect of adding one more museum 
on the solution of the problem. This is important because 
when several museums consider the museum pass pro-
gram, they need to decide which museums shall be in-
cluded themselves. If each museum makes its decision 
about joining the program independently, it becomes a 
strategic game for all potential museums in a given geo-
graphic region. Of course, the revenue sharing method 
they choose would eventually affect the equilibrium 

1It can be easily shown that Additivity plus Positivity (non-negative 
cost shares) implies Linearity, i.e.,  is linear with respect to the cost 
vector . See Aczel [5]. C

Copyright © 2011 SciRes.                                                                                AJOR 



 
54 Y. T. WANG 

number of museums joining the program. A complete 
analysis of this strategic game is beyond the scope of this 
paper. Nevertheless, it is helpful to consider the effect of 
adding one more museum (and likely generating more 
visitors) on the revenue (cost) allocation. 

For completeness, we first provide a comparative stat-
ics analysis of the Shapley value of the museum pass 
game. We demonstrate by an example that adding one 
more museum will decrease all museums’ revenue if 
there is no increase in the number of visitors. But if the 
additional museum brings additional visitors to the mu-
seum itself as well as some other museums, then it is 
possible that some museums are better off and some are 
worse off. 

Next, we provide a parallel analysis for the Shapley 
value of the cost sharing game. We also demonstrate by 
using the same example as for the museum pass game 
that adding one more museum will increase all visitors' 
cost if there is no increase in the number of visitors. But 
if the additional museum brings additional visitors to the 
museum itself as well as some other museums, then it is 
possible that some visitors are better off and some are 
worse off. 

Now consider the following example: 
Assume that initially there are three museums and 

three visitors (Figure 2(a)). Suppose that visitor 1 visits 
museums 1, 2, and 3, visitor 2 visits museums 1 and 2, 
and visitor 3 visitor museum 3 only. The Shapley value 
solution of the revenue sharing problem is the following:  

     1 1 1 1 1
1 , 2 , 3

3 2 3 2 3
       1  

Suppose that one more museum, museum 4, joins the 
museum pass program as shown in Figure 2(b). If mu-
seum 4 brings no additional visitors, then the solution is 
the following:  

   1 1 1 1
1 , 2

4 2 4 2
     ,  

   1 1 1 1
3 , 4 .

4 2 4 2
      

Obviously, all museums except the newly added mu-
seum are worse off than before. 

But as shown in Figure 2(c), if the new museum 4 
brings one additional visitor 4, who also visits other mu-
seums, e.g., museum 1, then museum 1 is better off while 
museums 2 and 3 are worse off as shown below (com-
pared to the case without the museum 4 and the visitor 4): 

   1 1 1 1 1
1 , 2

4 2 2 4 2
      ,  

   1 1 1 1 1
3 , 4

4 2 4 2 2
     

        
(a)         (b)          (c) 

Figure 2.  In this revenue sharing problem, the left side de-
notes visitors and the right side museums. The Shapley value 
solution assigns to each museum a proportional share of the 
total revenue. The total revenue is omitted. 
 

In general, adding one more museum without bringing 
in more visitors will make all existing museums worse 
off. But if more visitors are generated by the additional 
museum and these additional visitors also visit other 
museums in addition to the newly added museum, then 
some museums may be better off and some may be 
worse off, depending on how these visitors are distrib-
uted to the museums. 

In parallel, we have similar results for the cost sharing 
problem. We use the same example as above but now 
assume that museums 1,…,4 have costs  and 

, respectively. 
1 2 3, ,c c c

4c

Again, initially there are three museums and three visi-
tors as shown in Figure 3(a). Also suppose that visitor 1 
visits museums 1, 2, and 3, visitor 2 visits museums 1 and 
2, and visitor 3 visitor museum 3 only. The Shapley value 
of the cost sharing problem is the following: 

  1 2

1 1 1
1 ,

2 2 2
c c c    3

 

  1 2

1 1
2 ,

2 2
c c    

  3

1
3 .

2
c   

Suppose that one more museum, museum 4, joins with 
cost  (Figure 3(b)). If museum 4 brings no additional 
visitors, then the new cost sharing problem has the fol-
lowing Shapley value:  

4c

  1 2 3 4

1 1 1 1
1 ,

2 2 2 2
c c c c      

  1 2

1 1
2 ,

2 2
c c    

  3 4

1 1
3 .

2 2
c c    

Apparently all visitors are either worse off or no better 
off than before. 

But as shown in Figure 3(c), if the new museum 4 
brings one additional visitor 4, who also visits museum 1, 

.  
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then visitor 2 is better off while visitor 3 is worse off, but 
it is unclear whether visitor 1 is better off or worse off as 
shown below (compared to the case without the museum 
4 and the visitor 4)2: 

  1 2 3

1 1 1 1
1

3 2 2 3
c c c c     4 ,  

  1 2

1 1
2 ,

3 2
c c    

  3 4

1 1
3 ,

2 3
c c    

  1 4

1 1
4 .

3 3
c c    

In general, adding one more museum without bringing 
in more visitors will make all visitors worse off. But if 
more visitors are generated by the additional museum 
and these additional visitors also visit other museums in 
addition to the newly added museum, then some visitors 
may be better off and some may be worse off, depending 
on the new distribution of visitors to museums. 
 
6. Discussion 
 
It is straightforward to show that the game (2) is convex, 
and consequently its Shapley value is contained in its 
core [6]. 

Our model contributes to the recent literature on cost 
sharing problems involving cost functions that are gener-
ated from multiple technologies. In the traditional cost 
sharing models, it is usually assumed that all agents share 
a commonly owned technology given by a single cost 
function (or production function). And the cost function is 
independent of how the agents form coalitions. But in the 
cost sharing problem discussed in this paper, the coali-
tions of visitors determine the costs of the museums they 
have visited. In a recent paper, Trudeau [7] considers a 
cost sharing problem with multiple technologies, where  
 

          
(a)             (b)             (c) 

Figure 3. This is a cost sharing version of the comparative 
statics problem.  

gains come from the presence of agents rather than from 
the returns to scale. As pointed out in Trudeau [7], this 
literature on cost sharing problem with multiple tech-
nologies is closely related to network formation problems 
in which gains come from the presence of agents. 

As we have pointed out in Section 5, the Shapley 
value (in fact, any revenue sharing method) of the mu-
seum pass game induces a strategic game for the muse-
ums with regard to whether or not they should join the 
museum pass program in the first place. For example, if 
the number of visitors has increased and more revenue 
has been received, the Shapley value allocation just dis-
tributes the additional revenue equally to museums that 
are visited by these visitors. However, if one more mu-
seum joins the museum pass program, a new game must 
be defined and the Shapley value must be recalculated. 
Depending on how the additional visitors are distributed 
among the museums, it is possible that some museums 
may be better off and some worse off. But this, in effect, 
will determine which museums actually join the program 
(or are allowed to join by existing museum members if 
they vote on accepting new members). Indeed, each 
revenue sharing method would generate a strategic game 
for all potential museums when they contemplate par-
ticipating the museum pass program. An important ques-
tion is: which revenue sharing method would generate an 
efficient coalition of museums? 

For the cost sharing problem, if one more museum is 
added, its cost is equally allocated to those visitors who 
have visited the museum. If one more visitor has visited 
a number of museums, all existing visitors will benefit. 
In general, when one more museum is added it usually 
generates additional visitors to museums at the same 
time. In this case, as demonstrated by the example in 
Section 5, it is possible that some visitors are better off 
and some are worse off. When the number of visitors is 
large, choosing which museums to visit is an independ-
ent decision. Thus, unlike the museums in the museum 
pass program, visitors usually do not act strategically. 

Finally, we point out that the cost sharing model pro-
posed in this paper is more suitable in dealing with cost 
sharing problems involving two groups of agents in 
which each agent from the first group obtains services 
from some agents in the second group. And the total ser-
vice costs incurred to the second group must be shared 
among the agents in the first group. When the number of 
agents (users and service providers) is not so numerous, 
our cost sharing method provides a straightforward cal-
culation for the allocation of the costs. As agents are not 
so many, choosing which service providers once again 
becomes a strategic decision for the users, which, in turn, 
depends on the cost sharing method. 2 For this example, it depends on whether or not 1 1

1 1 1
>

2 3 3
c c c 4 . 

C1 

C2

C3

C4 

C1 C1 

C2 C2 

C3 C3 

C4 
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