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Abstract 
 
This paper considers a deteriorated multi-item economic order quantity (EOQ) problem, which has been stu-
died in literature, but the algorithms used in the literature are limited. In this paper, we explore the optimal 
policy of this inventory problem by analyzing the structural properties of the model, and introduce a simple 
algorithm for solving the optimal solution to this problem. Numerical results are reported to show the effi-
ciency of the proposed method. 
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1. Introduction 
 
Multi-item inventory problem with resource constraints 
is an important topic of inventory management [1]. These 
constrained inventory models are still hot topics in aca-
demic and practice fields, for example, see [2-6]. The re- 
source constraints typically arise from shipment capacity, 
warehouse capacity or budgetary limitation. Since some 
items such as fruits, vegetables, food items, drugs and 
fashion goods will deteriorate in the shipment or storage 
process, many works have been done for investigating 
inventory problems for deterioration items [7-11]. Since 
items’ deterioration often takes place during the storage 
period, some researchers have considered economic order 
quantity (EOQ) models for deteriorating items, for exam-
ples see [12,13]. 

Recently, Mandal et al. [14] present a constrained 
multi-item EOQ model with deteriorated items. In [14], 
the model is firstly formulated as the transcendental form 
and the polynomial form, i.e., without and with trunca-
tion on the deterioration terms. These two versions of the 
model are both solved by applying non-linear program-
ming (NLP) method (Lagrangian multiplier method). As 
[14] points out, the polynomial form is an approximation 
of the transcendental form. Secondly, the transcendental 
form is converted to the minimization of a signomial 
expression with a posynomial constraint, which is solved 
by applying a modified geometric programming (MGP) 
method. However, we argue that the studied problem can 
be solved using a simple algorithm without any model 

approximation or conversion.  
In this paper, we prove that the deteriorated multi-item 

EOQ model is a special convex separable nonlinear 
knapsack problem studied in [15], which is characterized 
by positive marginal cost (PMC) and increasing marginal 
loss-cost ratio (IMLCR). PMC requires positive marginal 
cost of decision variable, and IMLCR means that the 
marginal loss-cost ratio is increasing in decision variable. 
Following [15], we explore the optimal policy for the 
problem, and develop a simple algorithm for solving it. 
The main purpose of this paper is twofold: 1) to explore 
the optimal policy of this inventory problem by analyz-
ing the structural properties of the model; 2) to introduce 
a simple algorithm for solving the optimal solution to 
this problem. 

The reminder of this paper is organized as follows. We 
formulate the problem in the next section. In Section 3, 
we explore the structural properties of the problem, and 
provide the optimal policy and algorithm. Numerical 
results are reported in Section 4, and Section 5 briefly 
concludes this paper. 
 
2. Problem Formulation 
 
Consider a multi-item EOQ problem with a storage space 
constraint, in which all items ( 1, ,i n  ) deteriorate 
after certain periods. 

Before presenting the model, we list all notation as 
follows. Notice that the same notation used in [14] is 
presented. 
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n = Total number of items 
Qi = Order quantity 
c0i = Purchasing cost 
c1i = Holding cost per unit quantity per unit time 
c3i = Set-up cost 

i = Constant rate of deterioration ( 0 1i  ) 
wi = Required storage quantity per unit time 
Di = Demand rate per unit time 
Ti = Time period of each cycle 

1( , , )nTC T T = Total average cost function 
W = Available storage space 
Following [14], we set 

2
0 1 3i i i i i i i ia c D c D c    , 

2
0 1 0i i i i i i ib c D c D    , and 1i i i ic c D  . Then the 

deteriorated multi-item EOQ model can be expressed as 
follows (denoted as problem P). We refer the reader to 
[14] for the details of this model. 

1
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min  ( , , )

( )
i i

n

Tn n
i

i i i i
i i i i

TC T T

a e
f T b c

T T



 

 
     

 
 


,      (1) 

subject to 
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( ) ( ( 1))i i
n n

Ti
i i i

i i i

D
g T w e W

 

    ,       (2) 

0iT  , 1, ,i n  .                 (3) 

The order quantity is given by ( 1)i iTi
i

i

D
Q e


  , 

1, ,i n  . The first and second order derivatives of 
( )i if T , 1, ,i n  , and the first order derivative of 
( )i ig T , 1, ,i n  , are calculated as follows: 

2

( ) ( 1 )i iT
i i i i i i

i i

df T a b e T

dT T

   
 ,                (4) 

2 2 2

2 3

( ) 2 (2 2 )i iT
i i i i i i i i

i i

d f T a b e T T

dT T

     
 ,        (5) 

( )
i iTi i

i i
i

dg T
D w e

dT
 .                         (6) 

 
3. Structural Properties and Algorithm 
 
In this section, we first establish structural properties of 
problem P, and then we present an efficient procedure for 
solving the optimal solution to problem P. 
 
3.1. Structural Properties 
 
Before presenting the structural properties of problem P, 
we give two basic equations, which will be used in our 
proofs. Since Taylor expansion of exponential function is 

1

1
!

i i

k k
T i i

k

T
e

k
 



  , then we have 

2 21 1 2 i iT
i i i i i iT T T e       ,        (7) 

for 0iT  , 1, ,i n  . 
By comparing the definitions of ai and bi, we have  

i ia b , 1, ,i n  .               (8) 

Considering the objective function of problem P, we 
have the following proposition. 

Proposition 1. The cost 1( , , )nTC T T  is strictly 
convex.  

Proof. Since the function 1( , , )nTC T T  is separable, 
we only need to prove that ( )i if T  is strictly convex in 

iT , 1, ,i n  . According to Equations (7) and (8), we 
have. 

2 2

2 2 2 2 4 4

2 (2 2 )

2 2 1 1
2 2 2

i iT
i i i i i i

i i i i i i i
i i i i i i

a b e T T

T T b T
b b T T

  

  
 

   

  
         

  

. 

Substituting the above equation into Equation (5), we 
have. 

 2 4 4 4

2 3 0
22

i i i i i i i i

i i

d f T b T b T

dT T

 
    for 0iT  . 

Thus, ( )i if T  and 1( , , )nTC T T  are strictly convex.  
QED. 

The strictly convexity of 1( , , )nTC T T  ensures that 
the optimal solution to problem P is unique. This prop-
erty has also been indicated in [14] by using a more 
complicated proof procedure. 

Denote ProductLog( )z  as the principal solution for x 
in xz xe , which has the same function name in Ma-
thematica to stand for the Lambert W function. Let îT , 

1, ,i n  , be a value such that ( ) 0i i idf T dT  . Denote 
problem CP as problem P without the constraint in Equa-
tion (2), then the following proposition characterizes the 
optimal solution to problem CP. 

Proposition 2. The optimal solution to problem CP is 

1 ProductLog
ˆ

i

i i
i

i

a

b e
T



 
  

  , 1, ,i n  .     (9) 

Proof. Since ( ) 0i i idf T dT   at the point îT , we have 
ˆ ˆ( 1 ) 0i iT

i i i ia b e T     . This equation can be rewritten 

as 
ˆ 1 ˆ( 1)i iTi

i i
i

a
e T

b e
    , and hence we have 

1 ProductLog
ˆ

i

i i
i

i

a

b e
T



 
  

  . 

From Equation (8), we know 
1 i

i i i

a

e b e
   . According 
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to [16], we know that ProductLog( )z  is an increasing 

function for 
1

i

z
e

  , then we have ProductLog( )i

i i

a

b e
  

1
ProductLog( ) 1

ie
    . Substituting this equation into 

îT , we have hence ˆ 0iT  , which satisfies the positive 
constraint in Equation (3). Thus, îT , 1, ,i n  , is an 
optimal solution to problem CP. Since the optimal solu-
tion is unique, we know that the optimal solution to 
problem CP is îT , 1, ,i n  . 

QED. 
Following [15], we define the marginal loss-cost ratio 

of item i ( 1, ,i n  ) as. 

2

( )

( )
( )

i i

i i
T

i i i i i i
i i

i i i i i

i

df T

dT a e b T b
r T

dg T D wT
dT

   
  .        (10) 

Then we have the following proposition. 
Proposition 3. ( )i ir T  is strictly increasing in 

ˆ(0, ]i iT T , 1, ,i n  . 
Proof. From Equation (7), we know 1 i iT

i iT e   for 
0.iT  The convexity of ( )i if T guarantees i iT

i ia b e  
( 1 ) 0i iT    for ˆ(0, ]i iT T . Using i ia b  in Equa-
tion (8) and the above two equations, we have 

( 2 ) (2 )
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for ˆ(0, ]i iT T . Hence we have 

3

( ) [ ( 2 ) (2 )]
0

i i i iT T
i i i i i i i i

i i

dr T e b e T a T

dT DT w

       
  . 

Thus, ( )i ir T  is strictly increasing in ˆ(0, ]i iT T , 
1, ,i n  . 

QED 
Since this proposition illustrates that ( )i ir T  is strictly 

increasing in ˆ(0, ]i iT T , 1, ,i n  , we let ( )i iT r , 
( ,0]ir   , be the inverse function of ( )i ir T . Although 

it is difficult to write ( )i iT r  in a closed form, the strict 
monotony of ( )i iT r  ensures that ( )i iT r  can be easily 
determined by applying a bi-section search procedure 
over ˆ(0, ]i iT T , for any given ( ,0]ir   . 
 
3.2. Optimal Policy and Algorithm 
 
We now demonstrate that the deteriorated multi-item 
EOQ model is a special convex separable nonlinear 
knapsack problem studied in [15]. Firstly, Proposition 1 
illustrates that P is a convex problem; Secondly, from  

Equation (6), we know 
( )

0i i

i

dg T

dT
 , for 0iT  , 1, ,i n  , 

which means there are positive marginal costs in problem P; 
Finally, Proposition 3 ensures that the marginal loss-cost 

ratio ( )i ir T  is increasing in ˆ(0, ]i iT T , 1, ,i n  . 

Therefore, the theoretical results and solution procedure 
proposed in [15] are both applicable for problem P.  

Denote by 
*

iT , 1, ,i n  , the optimal solution to 
problem P. By directly applying the theoretical results in 
[15], we can summarize the optimal policy for the dete-
riorated multi-item EOQ problem in the following pro- 
position. 

Proposition 4. The optimal policy of problem P is (a) 
* ˆ

i iT T , 1, ,i n  , if 
1

ˆ( )
n

i i
i

g T W


 ; (b) *

1

( )
n

i i
i

g T W


  

and * *( ) ( )i i k kr T r T , ,  1, ,i k n  , specify the optimal 

solution *
iT , 1, ,i n  , if 

1

ˆ( )
n

i i
i

g T W


 . 

This proposition is obtained by directly applying the 
theoretical results in [15] to problem P, since problem P 
has PMC and IMLCR. Based on Propositions 2-4, the 
idea of the algorithm proposed in [15] can be used for 
solving problem P. The basic idea of the algorithm is as 
follows: If the constraint in Equation (2) is inactive, i.e.,  

1

ˆ( )
n

i i
i

g T W


 , then the optimal solution to problem P 

equals to the optimal solution to the unconstrained prob-
lem, i.e., * ˆ

i iT T , 1, ,i n  ; Otherwise, Proposition 4(b) 
means that obtaining the exact value of 

* * *( ) ( )i i k kr r T r T  , 
,  1, ,i k n  , is the key to solving the optimal solution to 

problem P. The optimal value *r  can be searched by 
applying a binary search method over the interval 

( ,0]r M  , where M  is a sufficient large value such  

that ( )

1

( ( 1))i i
n

T Mi
i

i i

D
w e W



  . 

Main steps of the above solution procedure for solving 
the optimal solution to problem P are summarized in the 
following algorithm. 

The Algorithm 

1

*

ˆ1:  Solve  , 1, , ,  from Equation (9);

ˆ 2: If ( ) ,  then 

ˆ               let ,  1, , ,  go to  8;

 3: Let , 0;

 4: Let ( ) 2;

 5: Calculate 

i

n
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Step T T







 

  

 








1

1

( ), 1, , ;
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   If ( ) ,  then let ;
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*

* *

             Go to  4;

 7:  Let , 1, , ;

 8:  Calculate ( , , ),  and output.
i i

i n

Step

Step T T i n

Step TC T T

  



 

In comparison with the two methods in [14], there are 
two main advantages of our algorithm: 1) It is a polyno-
mial algorithm of O(n) order, which ensures that the al-
gorithm is applicable for large-scale problems; 2) It does 
not need any approximation or conversion of the original 
model, thus it always solves the optimal solution to prob-
lem P. 
 
4. Numerical Results 
 
In this section, numerical experiments are provided to 
show the efficiency of the proposed algorithm for solv-
ing problem P. The instances of problem P are all ran-
domly generated. We use the notation x ~ ( , )U    to 
denote that x is uniformly generated over [ , ]  . The 
parameters of test instances are generated as follows: 

iw ~ (1,10)U , 0ic ~ (1,10)U , 1ic ~ (0.5,1.0)U , 3ic ~ 
(40,100)U , i ~ (0.01,0.10)U , iD ~ (200,500)U , 
1, ,i n  , and 100W n  .  

In this numerical study, we set n=100 and 1000, re-
spectively. For each problem size n, 100 test instances 
are randomly generated. The statistical results on number 
of iterations of the binary search and computation time 
(in milliseconds) are reported in Table 1, where 95% C.I. 
stands for 95% confidence interval.  

From Table 1, we can conclude that the proposed al-
gorithm can solve large-scale deteriorated multi-item 
EOQ models very quickly in few iteration times. Since 
the ranges of parameters are large, the standard devia-
tions of number of iterations and computation time are 
quite low, reflecting the fact that the algorithm is quite 
effective and robust. 

We also use our algorithm to solve the illustrative exam-
ple studied in [14], which outputs the optimal solution: 

*
1 0.2899T  , *

2 0.2176T  , *
1 102.6397Q  , *

2 98.6801Q  , 
* 2587.1382TC   with * = 0.5925r  . Unfortunately, this 

result cannot be directly compared with that solved by [14], 
because there is something wrong with the values of *

iT  
and *

iQ , 1,2i  , shown in Tables 2 and 3 of [14], since 
they violate the basic equation 
 
Table 1. Performance of our algorithm for solving the ran-
domly generated instances. 

 Number of iterations Computation time 
Problem size n 100 1000 100 1000 

Mean 27.9 31.8 217.0 2619.3 
Std. Dev. 1.7 1.7 8.9 38.8 

95% Lower 27.6 31.4 215.2 2611.6 
C.I. Upper 28.3 32.1 218.8 2627.0 

( 1)i iTi
i

i

D
Q e


  , 1, 2i  . For example, in the Table 2 of [14], 

when *
1 0.2414712T   and *

2 0.2419020T  , ( 1)i iTi
i

i

D
Q e


   

gives 1 85.3365Q  , 2 109.7828Q  . In addition, their 
mistake can also be verified by our proved optimal pol-
icy * * * *

1 1 2 2( ) ( )r T r T . For example, the values of * *( )i ir T , 
1, 2i   for the MGP solution presented in Table 3 of 

[14] are * *
1 1( ) 0.6017r T   , and * *

2 1( ) 0.5857r T   , which 
does not satisfy * * * *

1 1 2 2( ) ( )r T r T . 
From the above analysis, we illustrate that the solution 

provided in [14] does not satisfy the optimal policy 
proved in this paper, which is easily used to verify the 
optimality of a solution to problem P. Thus, the numeri-
cal results in [14] are incorrect. Since some comparison 
of NLP and MGP given by [14] were established based 
on the numerical results, especially the results in Tables 
2 and 3 of [14], we argue that the comparison of NLP 
and MCP in [14] are questionable.  
 
5. Conclusions 
 
In this paper, we explore the structural properties of de-
teriorated multi-item EOQ model and propose a simple 
algorithm for solving the optimal solution by proving 
that the studied problem is a special convex separable 
nonlinear knapsack problem. In addition, it is obvious 
that the basic idea and obtained results in this paper can 
be simply modified for solving the classical constrained 
multi-item EOQ problem. 
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