
American Journal of Operations Research, 2011, 1, 25-32
doi:10.4236/ajor.2011.12004 Published Online June 2011 (http://www.SciRP.org/journal/ajor/)

Copyright © 2011 SciRes. AJOR

Component-Oriented Reliability Analysis Based on
Hierarchical Bayesian Model for an Open Source Software

Yoshinobu Tamura1, Hidemitsu Takehara2, Shigeru Yamada2
1Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

2Graduate School of Engineering, Tottori University, Tottori, Japan
E-mail: tamura@yamaguchi-u.ac.jp, M09T7016M@edu.tottori-u.ac.jp, yamada@sse.tottori-u.ac.jp

Received March 11, 2011; revised April 10, 2011; accepted May 9, 2011

Abstract

The successful experience of adopting distributed development models in such open source projects includes
GNU/Linux operating system, Apache HTTP server, Android, BusyBox, and so on. The open source project
contains special features so-called software composition by which several geographically-dispersed compo-
nents are developed in all parts of the world. We propose a method of component-oriented reliability as-
sessment based on hierarchical Bayesian model and Markov chain Monte Carlo methods. Especially, we fo-
cus on the fault-detection rate for each component reported to the bug tracking system. We can assess the
reliability for the whole open source software system by using the confidence interval for each component.
Also, we analyze actual software fault-count data to show numerical examples of reliability assessment for
OSS.

Keywords: Open Source Software, Reliability, Bayesian Model, Markov Chain Monte Carlo Method

1. Introduction

Software development environment has changed into new
development paradigms such as concurrent distributed de-
velopment environment and the so-called open source pro-
ject by using network computing technologies [1]. Espe-
cially, such OSS (Open Source Software) systems which
serve as key components of critical infrastructures in the
society are still ever-expanding now [2]. The methodology
of the object-oriented design and analysis is a feature of
distributed development environment and greatly success-
ful in the field of programming-language, simulation, GUI
(graphical user interface), and constructing on database in
the software development. A general idea of the object-
oriented design and analysis is developed as a technique
which can easily construct and maintain the complex sys-
tem. The successful experience of adopting the distributed
development model in such open source projects includes
GNU/Linux operating system [2]. However, the poor han-
dling of the quality and customer support prohibit the pro-
gress of OSS. We focus on the problems in the software
quality, which prohibit the progress of OSS.

Especially, many software reliability growth models
(SRGM’s) [3] have been applied to assess the reliability
for quality management and testing-progress control of

software development. On the other hand, the effective
method of dynamic testing management for a new dis-
tributed development paradigm as typified by the open
source project has only a few presented [4-8]. In case of
considering the effect of the debugging process on entire
system in the development of a method of reliability as-
sessment for OSS, it is necessary to grasp the situation of
registration for bug tracking system, the connection status
of each component, degree of maturation of OSS, and so
on [9,10].

Especially, OSS is composed of several software com-
ponents as a feature of distributed development envi-
ronment. In such cases, it is appropriate to apply the me-
thod of component based reliability assessment rather
than one of reliability assessment based on SRGM’s.
Many SRGM’s are assumed to be suitable for the system
testing phase of software development. On the other hand,
it is difficult to apply SRGM’s to OSS, because OSS
development style has not the typical software develop-
ment environment, i.e., OSS development cycle has no
testing phase. Moreover, OSS is developed under a com-
bination of many software components. Therefore, it is
important for software developers to confirm the static
state of each component in OSS development phase from
the standpoint of reliability assessment [6-8]. The char-

Y. TAMURA ET AL. 26

acteristics in terms of the reliability assessment for OSS’s
are shown as follows [11,12]:
 OSS development cycle has no testing phase;
 The cumulative number of detected faults can not con-

verge to a finite value;
 It is difficult to apply SRGM’s to the development

cycle of OSS;
 OSS is developed under a combination of many

software components;
 Many software components of OSS are developed by

the geographically-dispersed software developers;
 OSS’s are grouped into several categories, i.e., appli-

cation software such as Firefox Web browser, server
software such as Apache HTTP server, embedded sys-
tem software such as Android, operating system soft-
ware such as Linux.

In this paper, we focus on an OSS developed under
open source project. We discuss the method of component-
oriented software reliability assessment considering the
fault-detection rate of each component based on Bayesian
theory and Markov chain Monte Carlo methods (MCMC).
It is important to understand the static state of OSS, i.e.,
the connection status of each component. We consider the
method of reliability assessment for the whole OSS sys-
tem by using the data of proportion for fault-detection rate
in terms of the software components. Especially, we esti-
mate the predicted distributions by using MCMC. Then,
we use the data of proportion data for fault-detection rate
in terms of the software components on the bug tracking
system as the sample data. Also, we analyze actual soft-
ware fault-count data to show numerical examples of soft-
ware reliability assessment for the OSS. Especially, we
derive the confidence interval for each component. Then,
we show that the proposed method can assist improvement
of quality for OSS. Our method may be useful for the soft-
ware testing manager to assess the static state of the whole
OSS system automatically.

2. Estimation of Predicted Distribution

Based on Bayesian Theory

We apply a Bayesian theory to the data in terms of fault-
detection rate of each OSS components. Let t be the
proportion data of the fault-detection rate in the OSS by
operational time

y

t . Also, t is the parameter of the
specific distribution at operational time t . We estimate

t by using yt . In this case, we use the prior distribu-
tion up to time . As an example, the updated data
is given by the following equation based on Bayesian
theory in case that we have knowledge of the prior infor-
mation

(t 1)

 independently of data . D

(|) ()
(|) (|) ().

(|) ()

p D p
p D p D p

p D p d

   
  

 


 (1)

In this paper, we estimate t by using the data of
proportion for past fault detection rate in order to esti-
mate t for the sequential data . Then, we can de-
rive the following equation from Equation (1):

ty

1 2

1 2 1

1 2 1

(| , , ,)

 (|) (| , , ,)

 (|) (| , , ,)d .

t t

t t t t

t t t t t

p y y y

p y p y y y

p y p y y y


 

  













 (2)

According to Equation (2), 1 2(| , , ,)t tp y y y 
1 1 2(| , , p y y

 is up-
dated on a real-time basis from 1,)t ty   .
Therefore, we define as follows:

1 2

1 1 1 2 1

1 2 1

(| , , ,)

 (|) (|) (| , , ,)d

 (|) (| , , ,)d .

t t

t t t t t t t

t t t t t

p y y y

p y p p y y y

p y p y y y

1



    

  

  



 







 (3)

Equation (3) means the probability at operational time
obtained from t 1t  at operational time . (1)t 
Then, we assume the simple case as follows:

1 1,t t t     (4)

where t is the independent Gaussian noise at opera-
tional time t [13].

3. Hierarchical Bayesian Model

In this paper, we assume the data trend of proportion for
the fault-detection rate as the following probability den-
sity function of normal distribution for simplicity:

 2

2

1
() exp ,

22

x
f x

t




 
 
  




 (5)

where  is the mean value and  the standard devia-
tion. We consider the hierarchical Bayesian model based
on the prior distribution and hyper prior distribution
composed of  and  .

Then, we can obtain the following equation from Equa-
tion (1).

(, |)

 (| ,) (|) ()

 (| ,) (|) ()d d

 (| ,) (|) ().

p D

p D p p

p D p p

p D p p

 
    

      

    






 (6)

Therefore, we can derive as follows:







1 2

1 2 1

1 2 1

(, | , , ,)

 (| ,) (|)

 (| , , ,)

 (| ,) (|)

 (| , , ,)d d .

t t t

t t t t t

t t

t t t t t

t t t

p y y y

p y p

p y y y

p y p

p y y y t

 

   



   

  

















 (7)

Copyright © 2011 SciRes. AJOR

Y. TAMURA ET AL.

Copyright © 2011 SciRes. AJOR

27

yAccording to Equation (7), 1 2(, | , , ,)t t tp y y  
1 1 1 2(, | , , , t t

Metropolis-Hastings (MH) algorithm in this paper, be is
updated on a real-time basis from 1)tp y y y     .
Therefore, we can obtain as follows:

cause MH algorithm has simple structure, and widely
used in many research fields.

The flow of MH algorithm is shown in Figure 1. Also,
the procedures of MH algorithm is as follows:







1 2

1 1 2 1

1 2 1

(, | , , ,)

 (| ,) (|)

 (|) (| , , ,)d

 (| ,) (|)

 (| , , ,)d d .

t t t

t t t t t

t t t t t

t t t t t

t t t t

p y y y

p y p

p p y y y

p y p

p y y y

1

 

   

   

   

  




















  (8)

 Generate   by using the applied density (,p)  
in case of t  .

 In case of (,) u     , replace   by 1t  . In case
of (,) u     , apply 1t   .

 Continue the above mentioned process without the
initial value dependence.

In this paper, we assume that ()tp  is (,)t tp   . Al-
so,   means  and   . Therefore, (,)    is
given by the following equation in this paper:

Equation (8) means the probability at operational time t
obtained from the operational time . We can esti-
mate

(1)t 
 and  at operational time t from Equation (8).

Also, we can derive the confidence interval from the es-
timated mean value ̂ and standard deviation ̂ . In
case of the upper side probability 100 % and the de-
gree of freedom (, we can obtain the upper and
lower confidence limits for the estimated confidence in-
terval as follows:

1)n

1 2

1 2

(, | , , ,)
.

(, | , , ,)
t

t t t

p y y y

p y y y

 
 
 





 (10)

5. Numerical Examples

There are many open source projects around the world. In
particular, we focus on an large scale open source solution
based on the Apache HTTP Server [16]. The fault-count
data used in this paper are collected in the bug tracking
system on the website of each open source project.

1

ˆ
ˆ (1) ,nt

n

   (9)

where k ()t  is the value of distribution in case of
the confidence interval

t
(1) at the degree of freedom

. Also, means the total number of data. k n
5.1. The Estimation Results Based on MCMC

4. MCMC
 The data of proportion for actual fault-detection rate for

each component in Apache HTTP Server is shown in
Table 1. We use the data from January 2008 to Septem-
ber 2010. Table 1 shows the data of proportion for actual
fault-detection rate for each month. Also, we apply
“Core”, “Documentation”, “mod_ssl”, “mod_proxy”, and
“Build” as the major components. We focus on the data
of all platform for Apache HTTP Server 2 version. We
assume that a unit of time is week, because these results
and computational times show little change if the unit of
time is day in terms of the software fault data sets.

It is one of the sampling method of the probability dis-
tribution based on Markov chain by the random number
generation. Basically, it is difficult to take a sample of
random variable from the multivariate distribution. How-
ever, we can easily take the probability sample from the
objective probability by using MCMC [14,15]. Several
MCMC algorithms have been proposed by several re-
searchers in order to solve these problems, i.e., Metropo-
lis-Hastings (MH) and Gibbs Sampler. Gibbs Sampler is
the extended method of MH algorithm. We apply the

 
 

|

|t

p D
a u

p D





 

 
 

|

|t

p D
a u

p D





 

1t t  

 1t  

 100,000t 

 100,000t 

*Regardless of the initial value effect
*Histogram analysis for posterior distrbution

Generation 

 = t  

 20,N 

Likelihood estimation

Initial value 1 configuration

Figure 1. The flow diagram of MH algorithm.

Y. TAMURA ET AL.

Copyright © 2011 SciRes. AJOR

28

Table 1. The data of proportion for actual fault-detection
rate for each component in Apache HTTP Server.

Date Core Documentation mod_ssl mod_proxy Build

Jan-08 0.500 00 0.050 00 0.150 00 0.250 00 0.050 00

Feb-08 0.357 14 0.142 86 0.071 43 0.214 29 0.214 29

Mar-08 0.153 85 0.307 69 0.076 92 0.230 77 0.230 77

Apr-08 0.269 23 0.307 69 0.153 85 0.192 31 0.076 92

May-08 0.285 71 0.238 10 0.285 71 0.095 24 0.095.24

Jun-08 0.375 00 0.187 50 0.000 00 0.062 50 0.375.00

Jul-08 0.280 00 0.120 00 0.080 00 0.320 00 0.200.00

Aug-08 0.230 77 0.076 92 0.307 69 0.307 69 0.076 92

Sep-08 0.277 78 0.166 67 0.222 22 0.111 11 0.222 22

Oct-08 0.380 95 0.142 86 0.142 86 0.047 62 0.285 71

Nov-08 0.214 29 0.214 29 0.071 43 0.214 29 0.285 71

Dec-08 0.176 47 0.352 94 0.294 12 0.117 65 0.058 82

Jan-09 0.315 79 0.421 05 0.105 26 0.052 63 0.105 26

Feb-09 0.200 00 0.133 33 0.133 33 0.333 33 0.200 00

Mar-09 0.285 71 0.285 71 0.142 86 0.142 86 0.142 86

Apr-09 0.500 00 0.000 00 0.250 00 0.250 00 0.000 00

May-09 0.250 00 0.250 00 0.250 00 0.166 67 0.08333

Jun-09 0.235 29 0.352 94 0.294 12 0.117 65 0.000 00

Jul-09 0.200 00 0.300 00 0.200 00 0.100 00 0.20000

Aug-09 0.285 71 0.357 14 0.071 43 0.142 86 0.14286

Sep-09 0.625 00 0.12500 0.125 00 0.125 00 0.00000

Oct-09 0.222 22 0.55556 0.11111 0.000 00 0.111 11

Nov-09 0.200 00 0.06667 0.46667 0.200 00 0.066 67

Dec-09 0.437 50 0.18750 0.062 50 0.187 50 0.125 00

Jan-10 0.222 22 0.33333 0.222 22 0.111 11 0.111 11

Feb-10 0.363 64 0.18182 0.363 64 0.090 91 0.000 00

Mar-10 0.315 79 0.052 63 0.210 53 0.210 53 0.210 53

Apr-10 0.666 67 0.111 11 0.111 11 0.000 00 0.111 11

May-10 0.000 00 0.500 00 0.375 00 0.000 00 0.125 00

Jun-10 0.545 45 0.181 82 0.181 82 0.090 91 0.000 00

Jul-10 0.333 33 0.222 22 0.333 33 0.000 00 0.111 11

Aug-10 0.411 76 0.235 29 0.235 29 0.000 00 0.117 65

Sep-10 0.300 00 0.500 00 0.200 00 0.000 00 0.000 00

Table 2. Comparison of the estimate with the actual data.

 Mean Standard Deviation

 Estimate Actual Estimate Actual

Core 0.3152 0.3157 0.1445 0.1386

Document 0.2325 0.2321 0.1440 0.1377

mod_ssl 0.1908 0.1910 0.1127 0.1078

mod_proxy 0.1357 0.1359 0.1020 0.0978

Build 0.1251 0. 1253 0.0981 0.0941

We show the estimation results based on MCMC for

each component in Figures 2-6, respectively. Moreover,
the comparison results of the estimates with the actual
data are shown in Table 2. Above mentioned results, we
can find that the level of fault-detection rate for “Core”
component is largest. On the other hand, we can find that
the level of fault detection rate for “Build” component is
smallest. Therefore, we can confirm that “Core” compo-
nent is the most affected one for the whole OSS system.
Moreover, we can confirm that the standard deviation of
fault importance level for “Document” is large. Thereby,
there is variation in the data of proportion for actual fault-
detection rate. Also, the estimation results of Table 2 is
shown to be optimistic results in terms of the standard
deviations.

We show the estimation results based on MCMC for
each component in Figures 2-6, respectively. Above the
mentioned results, we can find that the level of fault de-
tection rate for “Core” component is largest. On the other
hand, we can find that the level of fault detection rate for
“Build” component is smallest. Therefore, we can confirm
that “Core” component is the most affected one for the
whole OSS system. Moreover, we can confirm that the
standard deviation of fault importance level for “Docu-
ment” is large. Thereby, there is variation in the data of
proportion for actual fault-detection rate.

(a) (b)

Figure 2. The estimation results for Core component.

Y. TAMURA ET AL. 29

(a) (b)

Figure 3. The estimation results for Documentation component.

(a) (b)

Figure 4. The estimation results for mod_ssl component.

(a) (b)
Figure 5. The estimation results for mod_proxy component.

Copyright © 2011 SciRes. AJOR

Y. TAMURA ET AL.

Copyright © 2011 SciRes. AJOR

30

(a) (b)

Figure 6. The estimation results for Build component.

5.2. The Estimation Results Based on MCMC On the other hand, “mod_ssl” and “mod_proxy” compo-

nents decrease in width of the confidence interval, because
the open source project is proceeding without problems
according to be removed the faults of small components.

with Time Variation Considering
Confidence Interval

 In this section, we consider the case of 24, 0.95n   .

Then, 95% confidence interval is given by the following
equation:

6. Concluding Remarks

In this paper, we have focused on the reliability of OSS.
Moreover, we have proposed the method of component-
oriented software reliability assessment based on the hie-
rarchical Bayesian model and MCMC in order to esti-
mate the predicted distributions for each component of
OSS. Especially, we have assumed the data of proportion
for the fault-detection rate as the probability density func-
tion of normal distribution. Also, we have analyzed ac-
tual software fault-count data to show numerical exam-
ples of component-oriented software reliability assessment
for OSS.

23

ˆ
ˆ (0.05) .

24
t

  (7)

The estimation results based on MCMC with time varia-
tion of the data of proportion for each component are
shown in Figures 7-11, respectively. From Figures 7-11,
we can confirm that “Core” component is constant in small
width of the confidence interval. Also, “Core” component
remains in the large value continuously. These results mean
that the open source project keeps a high active state.
Therefore, we consider that the focused OSS system is
stable in terms of the occurrence rate of “Core” component.

Figure 7. The estimation results of confidence interval for Core component.

Y. TAMURA ET AL. 31

Figure 8. The estimation results of confidence interval for Documentation component.

Figure 9. The estimation results of confidence interval for mod_ssl component.

Figure 10. The estimation results of confidence interval for mod_proxy component.

Copyright © 2011 SciRes. AJOR

Y. TAMURA ET AL.

Copyright © 2011 SciRes. AJOR

32

Figure 11. The estimation results of confidence interval for Build component.

Finally, we have focused on fault-detection rate for

fault importance level of OSS. By using our method, the
software testing manager can assess the static state of
OSS. Our method may be useful as the method of com-
ponent-oriented reliability assessment for OSS.

7. Acknowledgements

This work was supported in part by the Grant-in-Aid for
Scientific Research (C), Grant No. 22510150 from the
Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan.

8. References

[1] L. T. Vaughn, “Client/Server System Design and Imple-

mentation,” McGraw-Hill, New York, 1994.

[2] E-Soft Inc., “Internet Research Reports,” 2010.
http://www.securityspace.com/sspace/

[3] S. Yamada, “Elements of Software Reliability-Modeling
Approach (in Japanese),” Kyoritsu-Shuppan, Tokyo, 2011.

[4] A. D. MacCormack, J. Rusnak and C. Y. Baldwin, “Ex-
ploring the Structure of Complex Software Designs: An
Empirical Study of Open Source and Proprietary Code,”
Informs Journal of Management Science, Vol. 52, No. 7,
2006, pp. 1015-1030.

[5] G. Kuk, “Strategic Interaction and Knowledge Sharing in
the KDE Developer Mailing List,” Informs Journal of
Management Science, Vol. 52, No. 7, 2006, pp. 1031-1042.

[6] Y. Zhoum and J. Davis, “Open Source Software Reliabil-
ity Model: An Empirical Approach,” Proceedings of the
Workshop on Open Source Software Engineering, Vol. 30,
No. 4, 2005, pp. 67-72,

[7] P. Li, M. Shaw, J. Herbsleb, B. Ray and P. Santhanam,
“Empirical Evaluation of Defect Projection Models for
Widely-Deployed Production Software Systems,” Pro-
ceedings of the 12th International Symposium on the
Foundations of Software Engineering, New York, No-

vember 2004, pp. 263-272.

[8] J. Norris, “Mission-Critical Development with Open
Source Software,” IEEE Software Magazine, Vol. 21, No.
1, 2004, pp. 42-49.

[9] Y. Tamura and S. Yamada, “Software Reliability Assess-
ment and Optimal Version-Upgrade Problem for Open
Source Software,” Proceedings of the 2007 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
Montreal, 7-10 October 2007, pp. 1333-1338.
doi:10.1109/ICSMC.2007.4413582

[10] Y. Tamura and S. Yamada, “A Method of User-Oriented
Reliability Assessment for Open Source Software and its
Applications,” Proceedings of the 2006 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
Taipei, 8-11 October 2006, pp. 2185-2190.
doi:10.1109/ICSMC.2006.385185

[11] D. Bosio, B. Littlewood, L. Strigini and M. J. Newby,
“Advantages of Open Source Processes for Reliability:
Clarifying the Issues,” Proceedings of the Open Source
Software Development Workshop, Newcastle, 25-26
February 2002, pp. 30-46.

[12] F. Zou and J. Davis, “Analyzing and Modeling Open
Source Software Bug Report Data,” Proceedings of the
19th Australian Conference on Software Engineering,
Washington, D.C., 26-28 March 2008, pp. 461-469.

[13] T. Matsumoto, “Implementations of Bayesian Learning
(in Japanese),” Journal of the Institute of Electronics, In-
formation and Communication Engineers, Vol. 92, No.
10, 2009, pp. 853-860.

[14] B. P. Carlin and S. Chib, “Bayesian Model Choice via
Markov Chain Monte Carlo,” Journal of Royal Statistical
Society: Series B (Methodological), Vol. 57, No. 3, 1995,
pp. 473-484.

[15] P. J. Green, “Reversible Jump Markov Chain Monte
Carlo Computation and Bayesian Model Determination,”
Journal of Biometrika, Vol. 82, No. 4, 1995, pp. 711-732.
doi:10.1093/biomet/82.4.711

[16] The Apache HTTP Server Project, “The Apache Software
Foundation,” 2010. http://httpd.apache.org/

http://dx.doi.org/10.1109/ICSMC.2007.4413582
http://dx.doi.org/10.1109/ICSMC.2006.385185
http://dx.doi.org/10.1093/biomet/82.4.711

