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ABSTRACT 

All allografts suffer a number of unavoidable 
ischemic insults. These, starting with brain death 
and ending with reperfusion, are very trouble- 
some, as ischemia-reperfusion injury (IRI) is de- 
monstrated to be a major cause of allograft da- 
mage in various types of transplantations. To 
counter the threat this poses to allograft func- 
tion, investigators have worked diligently over 
the past decades in clinical settings and in the 
laboratory to understand the pathophysiology 
and immune mechanism underlying IRI hoping 
to ultimately devise strategies that lessen its 
detrimental effects on allografts. Herein, we re- 
view the major immune components of the IRI 
dynamic process. Better understanding of the 
cellular pathophysiological processes underly- 
ing IRI will hopefully result in the design of more 
targeted therapies to prevent the injury, hasten 
repair, and minimize chronic progressive allo- 
graft damage. 
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1. INTRODUCTION 

During transplantation procedures, allografts are ex- 
posed to various periods of complete ischemia; ischemic 
insults start with brain death and its associated hemody- 
namic disturbances (elevated intracranial pressure; bra- 
dycardia; decreased cardiac output) continue during do- 
nor organ procurement, cold preservation, and implanta- 
tion. Following reperfusion, ischemia-reperfusion injury 

(IRI) is triggered; this could potentially lead to allograft 
damage (delayed graft function, acute and chronic rejec- 
tion), posing serious threats to transplant recipients. 
Along the cascade of pathogenic events that accompany 
ischemic insults and cause IRI, there has been an appre- 
ciation for various immune mechanisms within the al- 
lograft itself and their role in priming the allograft for 
further injury. Free radical-mediated injury releases pro- 
inflammatory cytokines and activates the innate immune 
system ultimately triggering adaptive immune responses 
and resulting in tissue damage. The outcome of the organ 
depends on whether cell death or regeneration prevails. 
The aim of this review is to revisit these immune mecha- 
nisms at the cellular and molecular levels, and provide 
useful clinical recommendations aiming at overcoming 
the challenges of IRI.  

2. BODY 

2.1. General Overview of Immune Injury in 
Ischemic-Reperfusion 

Studies in solid organ transplantation (SOT) have 
shown that IRI is a potent activator of the immune sys- 
tem, and therefore leads to poor functional outcomes that 
are directly related to increasing ischemia times [1-4]. 
Yet ischemia is only one of several factors shown to con- 
tribute to acute and chronic rejection, as reperfusion in- 
jury further propagates and intensifies the immune re- 
sponse [5]. Specifically, the restoration of blood flow to 
the previously ischemic allograft compromises the vi- 
ability of the transplanted tissues via the generation of 
reactive oxygen species (ROS), activation of the com- 
plement system, and the production of pro-inflammatory 
cytokines that intensify damage in the graft [6]. Fur- 
thermore, the expression of MHC antigens is increased 
after IRI with a concomitant activation of the innate im- 
mune system and production of an inflammatory state *Conflicts of interest: None. 
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that ultimately leads to acute rejection, increased propen- 
sity towards chronic graft deterioration, and decreased 
potential for tolerance induction and immune regulation 
[5].  

The strong inflammatory response induced by IRI both 
activates the immune system and mediates tissue injury 
via activation of leukocytes and endothelial cells, gen- 
eration of ROS, and upregulation of adhesion molecules 
and inflammatory cytokines [7]. Cell adhesion molecules 
on activated leukocytes interact with their ligands on the 
injured endothelium of the previously ischemic graft, 
which leads to diapedesis of these cells into the intersti- 
tial space. The activated leukocytes also release prote- 
olytic enzymes and generate ROS thereby damaging tis- 
sues and propagating the injury response. Notably, the 
duration of ischemia is directly correlated to the intensity 
of immune activation, with increased ischemic times 
corresponding to increased expression of inflammatory 
cytokines, such as IL-1, IFN-γ, and TNF-α [7,8]. Ische- 
mia causes further damage to the allograft as oxygen- 
starved tissues increase glycolysis leading to lactic acid 
accumulation, which reduces the pH and impairs mem- 
brane transport functions [9]. If perfusion is not restored, 
the ischemic tissue will undergo necrosis; but on the 
other hand, reperfusion causes production of ROS in the 
mitochondria which leads to injury beyond that caused 
by the ischemia [10]. 

2.2. Role of the Innate Immune System 

The activation of the immune system is mediated by 
endogenous stress signals and a class of primitive pro- 
teins expressed by the innate immune system. Specifi- 
cally, ischemically injured tissues generate damage-as- 
sociated molecular patterns (DAMPs), which are recog- 
nized by pattern-recognition receptors (PRRs) of the in- 
nate immune system leading to upregulation of inflam- 
matory cytokines and cell adhesion molecules [11]. This 
contributes to the recruitment of leukocytes into the graft 
and, ultimately, to transplant vasculopathy [11,12]. The 
innate immune system is further triggered by the genera- 
tion of ROS, which activate heat shock proteins (HSP) 
that signal toll-like receptors (TLRs) on macrophages 
and B cells, increasing the propensity towards acute and 
chronic rejection [13]. Notably, the link between non- 
specific injury, such as IRI, and the innate immune sys- 
tem is still speculative, and although there is biological 
plausibility, unequivocal evidence does not yet exist [14].  

2.3. Role of the Adaptive Immune System 

The adaptive immune system also contributes to the 
rejection process with the participation of TLRs that sen- 
sitize and activate antigen-presenting cells (APCs). The 
sensitization of APCs leads to a significant increase of 

effector T cells that further augments the pro-inflamma- 
tory cytokine milieu induced by IRI [12,15,16]. An ele- 
gant explanation came from Matzinger conducted a se- 
ries of elegant experiments to investigate the relationship 
between tissue damage, innate immune responses, and 
relaying danger signals to the adaptive immune system 
via TLRs and APCs [17]. These “danger signals” or 
“alarmins” released during ischemia and reperfusion 
consist of various graft-derived molecules [DNA, RNA, 
oxidized proteins and lipids, high-mobility group box-1 
(HMGB1), uric acid, and calcium pyrophosphate crystals) 
[18]. Recent experiments have proven that HMGB1 is 
actively secreted from at-risk cells via a free-radicals- 
dependent pathway in the context hepatocyte ischemia- 
reperfusion. This process requires intact TLR4 signaling 
and calcium-dependent kinases [19,20]. In another set- 
ting, TLR4 is overexpressed in tubular epithelial cells 
following IRI. Furthermore, TLR4-/- and MyD88-/- 
(MyD88 being TLR4 signaling pathway protein) mice 
were protected from IRI kidney dysfunction, with no 
tubular damage, neutrophil and macrophage accumula- 
tion, and expression of proinflammatory cytokines and 
chemokines [21]. Evidently, TLRs and ROS play a dual 
immunological role, activating the innate and adaptive 
immune system, and potentially contributing to both 
acute and chronic rejection.  

2.4. Role of the Complement Pathway 

Activation of the complement pathway is another 
critical event leading to tissue injury after IRI. Indeed, 
complement is considered a key determinant of tissue 
rejection after SOT as it damages cell membranes through 
the formation of membrane attack complexes [6,7,9,22, 
23]. The byproducts of the complement cascade also 
contribute to tissue rejection, as chemotactic agents such 
as C5a attract neutrophils to sites of IRI and anaphyla- 
toxins (C3a, C5a) cause degranulation of mast cell and 
the release of histamine, which further damages tissues. 

2.5. Contribution of the Alloimmune  
Response 

Although the primary factor leading to transplant re- 
jection is undoubtedly the T cell alloimmune response 
triggered by MHC incompatibility, IRI further intensifies 
this response, and is believed to be the strongest secon- 
dary factor to augment graft allogenicity [24,25]. The 
danger signals produced by ischemic injury induce an 
elegant interaction of immune activation and signal 
transduction that predisposes transplanted tissues to im- 
munologic recognition and rejection through upregula- 
tion of MHC II (signal 1) and costimulation (signal 2) by 
activation of APCs [4]. Each episode of acute rejection 
induces an inflammatory state that is detrimental to 
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long-term outcomes of the allograft, as multiple episodes 
of acute rejection trigger myointimal proliferation, al- 
lograft vessel occlusion, and chronic graft deterioration 
[4,5,26-29]. This is particularly true in vascularized 
composite allotransplantation, where the highly immu- 
nogenic skin component is at high risk for multiple epi- 
sodes of acute rejection, and this has been shown to lead 
to composite tissue vasculopathy and degeneration in a 
rat hind limb transplantation model [30]. Therefore, IRI 
induces an immune response, which propagates further 
injury, thereby promoting a new injury response and in- 
creased immune recognition [31]. This self-perpetuating 
feature may lead to irreversible tissue damage and 
chronic rejection. In this regard, further research in novel 
immunomodulatory protocols aiming at minimizing im- 
munosuppression post transplantation holds great prom- 
ise, as not only it alleviates the many metabolic (and 
neoplastic) side effects of high-dose immunosuppression 
[32] but also seems to offer substantial immune protec- 
tion from IRI.  

2.6. Direct Implication of Toll-Like Receptors 
(TLRs) 

A clear relationship between the duration of ischemia 
and allograft survival has been demonstrated in large 
clinical trials of SOT, and it is hypothesized that this as- 
sociation is mediated by TLRs that are activated by ROS 
generated by IRI [5,33]. Ample evidence exists impli- 
cating TLRs as key contributors to the rate of acute re- 
jection in heart [34], kidney [21], liver [3], lung [5], skin 
[35], and islet allografts [36]. In clinical studies of car- 
diac transplantation, TLR gene expression was found to 
be associated with endothelial dysfunction and vasculo- 
pathy [12]. Notably, Genome-wide association studies 
(GWAS) have shown that transplant recipients with less 
responsive TLR genes experience improved immu- 
nological outcomes illustrated by fewer rejection epi- 
sodes and improved graft function [1,2,37]. Noris et al. 
studied the role of TLR regulation on allograft survival 
in a fully MHC-mismatched kidney allograft model, and 
found that absence of a negative regulator of TLRs led to 
a more vigorous acute rejection response with enhanced 
IRI and rapid induction of DC maturation [38]. In the 
same study, induction of transplant tolerance was im- 
paired and the rate of chronic rejection was amplified 
due to the absence of this negative regulator of TLRs. 
Similar to the GWAS studies in cardiac transplantation, 
human kidney allograft recipients with unresponsiveness 
to their allografts expressed lower levels of MyD88 (a 
TLR signal adaptor) than their counterparts that experi- 
enced chronic rejection, further implicating TLRs as a 
key determinant in the rejection process [39]. Along 
these lines, Walker et al was able to demonstrate this link 
utilizing a fully MHC-mismatched model of skin allo- 

grafts in MyD88 knockout mice [38]. In this study, 
MyD88 knockout mice experienced indefinite allograft 
survival after administration of costimulatory blockade 
(CTLA4-Ig and anti-CD154), while wild-type animals 
rejected their allografts at an early timepoint. Similarly, 
systemic administration of a TLR activator (CpG) suc- 
cessfully militated tolerance induction in skin allografts 
[40], which together strongly suggests that TLR signal- 
ing impairs transplant tolerance [41]. Therefore, if the 
consequences of IRI can be mitigated, it may be possible 
to limit or prevent the activation of the immune system 
that leads to acute and chronic rejection. Novel bio- 
markers of IRI taking into advantage the ubiquitous in- 
volvement of IRI have a great potential in predicting the 
development and severity of IRI, potentially serving also 
as prognostic indicators [42].  

2.7. Detrimental and Independent Role of 
Prolonged Ischemia 

Much information has been gleaned from elucidation 
of the molecular foundations of IRI, and this has served 
to inform our understanding of the effects of IRI at the 
macroscopic level.  

In cardiac transplantation, for example IRI commonly 
occurs in the early post-transplant period, especially with 
prolonged ischemic time, and is characterized by hy- 
peremia in the previously ischemic myocardium, which 
later becomes prone to coagulative necrosis [43]. Pro- 
longed ischemia in cardiac tissue promotes increased 
entry of activated T cells, leukocyte migration and ac- 
cumulation in peripheral tissues, as well as binding of 
natural IgM antibodies to self-antigens exposed after 
tissue ischemia—a potent activator of the complement 
cascade [17,44]. Consequentially, cardiac transplant re- 
cipients subjected to prolonged ischemic times are at 
increased risk for early graft loss, coronary artery vascu- 
lopathy, and early death after transplant [45]. Indeed, 
large clinical trials have confirmed that prolonged 
ischemia is an independent risk factor for mortality at 1 
and 10 years post-transplantation [45].  

In kidney transplants, allografts exposed to prolonged 
ischemia were prone to more acute rejection episodes in 
animal models and subsequent clinical trials observed the 
same effect on human renal transplants [24]. In fact, 
analysis of more than 6000 kidney transplant recipients 
revealed that patients with prolonged ischemic times 
suffered increased early acute rejection episodes and 
decreased 6-year renal allograft survival—findings that 
were independent of HLA mismatch, panel reactive an- 
tibodies, donor/recipient age, and early rejection treat- 
ments [46]. Notably, acute rejection episodes were de- 
termined to be a significant risk factor for short and long- 
term graft survival [47].  

In lung and liver allografts, IRI leads to higher inci- 
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dences of acute and chronic rejection [5,27]. Although 
there are very few studies examining IRI in vascularized 
composite allotransplantation, it is plausible that vascu- 
larized composite allografts may be even more suscepti- 
ble to IRI given the diversity of tissue components con- 
tained within the graft [48].  

2.8. Prevention of IRI 

In an era where organ shortage is a universal problem 
with high rates of death among patients on waiting lists, 
measures to prevent IRI and ensure healthier allografts 
and safer transplantation procedures are critical. Kidneys 
recovered from donors should be stored using pulsatile 
perfusion, allowing better protection during preservation- 
related ischemia, as well as the measurement of several 
parameters—flow, resistance, lactate excretion, alfa GST 
—which may be useful to assess the extent of ischemic 
injury. Prevention of IRI can even be started before organ 
recovery by donor pretreatment. Pretreatment with anti- 
oxidants holds great promise conferring protective ef- 
fects against liver IRI in a rat and mice models [49,50]. 
Moreover, the role of hemoxygenase-1 (HO-1, enzyme 
converting heme into biliverdin, carbon monoxide, and 
free Fe) has been extensively studied in protection from 
ischemia-reperfusion injury. Exposure of liver transplant 
recipient animals to inhaled CO decreased serum alanine 
transferase, hepatocyte necrosis, and neutrophil infil- 
trates in dose-dependent fashion [51]. Noteworthy, HO-1 
can be induced by simvastatin preconditioning [52]. In- 
terestingly, through its strong anti-inflammatory effect, 
nicotine has been shown to reduce tubular damage in 
experimental models of warm ischemia when adminis- 
tered before reperfusion [53]. As for myocardial ische- 
mia-reperfusion injury, it was shown that the use of the 
bifunctional platelet GPIIIa49-66 ligand confers dose- 
dependent protective effects in a rat model of acute 
myocardial ischemia [54].  

In the human setting, it has been shown that cyc- 
losporine inhibits permeability transition and, when ad- 
ministered on reperfusion, decreases creatine kinase re- 
lease and infarct size in humans undergoing percutane- 
ous coronary intervention for acute cardiac ischemia [55]. 
This needs thorough evaluation in transplant models. 

Evidently, a greater understanding of the molecular 
mechanisms underlying protective pathways will pave 
the way for clinical trials aiming at testing different 
strategies for minimizing IRI.  

3. CONCLUSION 

IRI is a real threat to the success of transplantation and 
although some period of ischemia is unavoidable, at- 
tempts should be made to minimize it to the greatest ex- 
tent possible. Clear evidence exists, linking prolonged 

ischemia to increased episodes of acute and chronic re- 
jection, yet we still do not have a clear understanding of 
what areas of the immune system can be targeted to 
mitigate the effects of IRI. Future research trying to 
bridge this knowledge gap and identify such targets in 
both the innate and adaptive immune system, as well as 
characterization of cytokine expression responsible for 
mediating the effects of IRI may enable longer allograft 
survival and a better patient quality of life.  
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