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Abstract

Since the austral summer of 2014 southeastern Brazil has been experiencing one of the most se-
vere droughts in decades. This rainfall deficiency has generated water shortages and a water crisis
that have affected population and local economies in the metropolitan region of Sao Paulo, the
largest megacity in South America. By January 2015, main reservoirs had reached storage levels of
only 5% of their 1.3 billion m3 capacity. The meteorological causes of the drought situation were
linked to changes in the regional circulation, characterized by a mid-troposphere blocking high
that lasted 45 days during the summer of 2014 over southeastern Brazil, something not seen in
five decades. The water crisis was aggravated by a combination of lack of rainfall and higher tem-
peratures, the summer of 2014 being the warmest and driest over the Cantareira reservoir system
since 1951. Increasing population and water consumption increased vulnerability in the region,
and while human-induced warming may not have generated the atmospheric conditions behind
the 2014 and 2015 summer droughts in Southeast Brazil, it is more likely that the warm tempera-
tures have affected the severity of the drought and exacerbated the impacts on the population.
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1. Introduction

Hydrometeorological and climate extremes and change can exert profound stresses on urban environments.
Since the end of 2013, southeastern Brazil has been struggling through the worst drought in 55 years, and this
situation has continued during 2015. Cities such as Sdo Paulo, Rio de Janeiro and Belo Horizonte are facing wa-
ter shortages, putting a total of 40 million people at risk in the region. Reservoirs that supply water to these cities
were at dangerously low levels in 2013/14 and continued very low during 2014/15, due to a deficient rainy sea-
son accompanied by record high temperatures and subsequent increase in water demand by the population. We
refer to this situation as a “water crisis”. Geographically, Southeastern Brazil includes the states of Minas Gerais,
Sao Paulo, Espirito Santo and Rio de Janeiro, in the region between 15°S - 25°S and 40°W and 55°W. The Can-
tareira Reservoir system is located in the eastern side of the State of Sao Paulo (Figure 1).

Drought and higher temperatures throughout the region were detected, including in the area of the Cantareira
Reservoir system, the main supplier of water for the Sdo Paulo Metropolitan Area (SPMA), which continuously
provides water to almost 8.8 million in habitants. The state government did not declare an emergency until Au-
gust 19" 2015 when the Alto Tiete reservoir system, the second largest system supplying water for the SPMA,
also entered into a crisis situation. The rivers feeding the Cantareira system were very low in 2014 and continue
dangerously low in 2015. In the last 60 years, other seasonal droughts have affected the SPMA and southeastern
Brazil, such as in 1953/54, 1962/63 [1] and 2000/01 [2], but this current water crisis seems to be the worst both
in terms of impacts and in the number of people affected. The SPMA is South America’s largest metropolis,
where 10% of Brazilians live (20 million people) and a third of gross domestic product is produced.

In this study we investigate the consequences and impacts of the 2013/14 and 2014/15 drought and related
water crisis in Sao Paulo, and assess how extreme these droughts were as compared to other events in the past.
We assess some climatic characteristics of the drought situation during the summers of 2013/14 and 2014/15
over the Cantareira reservoir system, and assess the regional hydrology and situation of the reservoirs in the re-
gion that characterize the water crisis in 2014 and 2015. The large-scale and regional circulation and SST ano-
malies in the Pacific and Atlantic Oceans leading to these droughts have been discussed elsewhere [3]-[6].

2. Data and Methodology

The main rainfall data set comes from the Brazilian Center for Weather Forecast and Climate Studies of the Na-
tional Institute for Space Research (CPTEC/INPE) for 1961-2015. For the analysis of the Cantareira reservoir
watershed region, station rainfall data comes from National Institute for Meteorology (INMET) for 1961-2015
and the National Center for Monitoring and Early Warning for Natural Disasters (CEMADEN) for 2014 and
2015. Other rainfall data sources are the combination of Tropical Rainfall Measuring Mission (TRMM [7]) sa-
tellite precipitation estimates with surface observations over the relevant area (20°S - 24°S; 50°W - 46°W), dur-
ing the austral summer rainy season—December-January-February DJF of 1961-2015. When needed, interpola-
tion was made using kriging, with the rainfall time series coming from the various data sets. Discharge data sets
came from the Sao Paulo State Water Utility Company (SABESP). Data on population for the city of Sao Paulo
came from the Municipality of Sao Paulo. Circulation features were derived from the NCEP NCAR reanalises.
The Brazilian Institute of Meteorology INMET made available maximum temperature data for the region.

In order to assess drought and precipitation deficits, we use the Standardized Precipitation Index (SPI) on
scales of 1, 3, 4, 6 and 12 months to analyze the frequencies of extreme drought (when SPI value < —2.0) based
on the historic rainfall data. The SPI is a tool which was developed primarily for defining and monitoring drought.
It allows ananalyst to determine therarityof a drought at a given time scale (temporal resolution) of in terest for
any rainfall station with historic data. It can also be used to determine periods of anomalously wet events. The SPI
was done at a monthly time scale and the computation was carried out based on gamma distribution function. By
transforming the rainfall data into log normal values, the parameters of the gamma distribution were calculated
using maximum likelihood estimation. The resulting parameters were then used to find the incomplete gamma
cumulative probability of an observed precipitation event. The incomplete gamma cumulative probability was
then converted to gamma probabilities after including the occurrences of zero precipitation events. The gamma
probabilities were transformed into standardized normal distribution using equi-probability transformation tech-
niques. In other words, the SPI is simply the difference of precipitation from the mean for a specified time pe-
riod divided by the standard deviation where the mean and standard deviation are determined from past record.

The SPI may be computed with different periods ranging from one month (short-term conditions) to 12 months
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Monthly Rainfall (mm)

Figure 1. Rainfall time series from October 2012 to June 2015 for the Cantareira region (lower panel). The upper panel maps
show the austral summer DJF 2013/14 and 2014/15 rainfall anomalies (mm) in southeastern Brazil, relative to the 1961-1990
climatology. (Source of data: CPTEC/INPE, INMET, ANA, CEPAGRI, CEMADEN.) The map of the state of Sao Paulo
(SP) in between the rainfall anomaly maps shows the location of the Cantareira region in red. The map of Brazil in the lower
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(long-term conditions). When taken together, they give a temporal picture of the severity of precipitation ano-
malies and facilitate the assessment of the effects of a precipitation deficit on different water resources compo-
nents (groundwater, reservoir storage, soil moisture, streamflow). Drought periods are represented by relatively
high negative deviations.

3. Meteorological Context: A Review
3.1. Climatological Situation in 2014 and 2015

The rainy season over Southeast Brazil starts in October and ends in April [8]. November 2013 was a rather
normal month in terms of overall rainfall amounts, although some spatial and temporal variability was apparent.
During mid- to late December 2013, an intense and persistent South Atlantic Convergence Zone (SACZ) epi-
sode affected the states of Minas Gerais and Espirito Santo [9]. The SACZ was linked to an enhanced low-level
moisture convergence and rising motion causing intense rainfall and severe flooding and damage. While ex-
treme rainfall affected these states in the northern portion of southeastern Brazil, compensating subsidence in-
duced scarce precipitation and high temperatures over the southern portion (including Sdo Paulo, Rio de Janeiro
and southern Minas Gerais).

After the SACZ dissipation in late December 2013, precipitation remained persistently reduced over most of
central and southeastern Brazil. Over the Cantareira region, from December 2013 to February 2014 precipitation
was about 60% - 70% below normal, and 2014/15 rainfall was also below normal (about 25%) from December
2014 to February 2015 (Figure 1).

Figure 1 shows that mean precipitation for the period from December 2013 to February 2014 in central and
southeastern Brazil was about 300 mm below normal. This tendency still persisted during the summer of 2015
(December 2014-February 2015) but in lesser degree, since while December 2014 and January 2015 showed
rainfall below normal, February rainfall was above normal. In both seasons, the region with large negative rain-
fall anomalies includes the Cantareira reservoir system. Figure 2(a) shows a decreasing trend in precipitation
over the Cantareira region since the 1990’s, and 2014 shows the lowest rainfall value since 1962. The Mann-
Kendall test was applied to the time series of summertime maximum temperature and rainfall in the region of
study. The rainfall time series shows a negative trend, significant at the 0.05 level over the period 1994-2015
(and significant at the 0.1 level for the period 1962-2015). On the other hand, daily maximum air temperatures
during these summers have increased in time, and maximum temperatures series show positive trends significant
at the 0.01 level. Figure 2(b) shows that with less rainfall we have a reduced summertime discharge into the
Cantareira system, and higher air temperatures induce an increase in water use exacerbated by the increase in
population in the SPMA to 20 million people in 2014, as compared to 17 million in 2001 and 5 million in 1963.
The negative rainfall trend detected over the Cantareira since the 1990’s seem to be related to changes in rainfall
variability over that region, as shown in [8].

Data derived from the Gravimetry Recovery and Climate Experiment (GRACE) mission [10] are used to de-
fine the beginning of the current drought over Southeastern Brazil from 2011 to 2015. By using Global Land
Data Assimilation System (GLDAS) outputs, it was found that the extreme drought is mostly related to lower-
than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotrans-
piration that started in 2011. A reduction of 20% - 23% of precipitation over an extended period of three years is
enough to createserious water scarcity conditions in southeastern Brazil.

The regional-scale circulation characteristics associated with the summertime drought of 2013/14 and 2014/
15 showed that an important characteristic for the 2013/14 droughts was the persistence of a mid-atmosphere
blocking high over southeast Brazil. The regional circulation features a wide, intense and very persistent
high-pressure area with a barotropic structure over southeast Brazil. Figures 3(a)-(c) show the geopotential
height contours and their corresponding anomalies at the 500-hPa level for three different periods: 01-15 Janu-
ary 16-31 January and 01-15 February 2014. It is remarkable that the positive geopotential height anomalies re-
mained almost unchanged for 45 days, something that has no precedent in the region since 1961. Subsidence
prevailed in the middle and lower troposphere over southeastern Brazil and subjacent Atlantic Ocean inhibiting
distinctive seasonal convective activity. At lower levels, the anomalous anticyclone modified the typical nor-
theasterly flow that brings humidity from the Amazon to Southeastern Brazil. Instead, an there was intense nor-
therly low level moisture transport during several episodes of formation of a low-level jet east of the Andes dur-
ing the summer of 2014, inducing intense precipitation over western Amazonia that resulted in severe flooding

()



C.A. Nobre etal.

. . . . =
= DJF Rainfall and Maximum Temperature anomaly in theCantareira =
€ 20 (a) region 30 =
£ X
£ 150 20 3

c
£ 100 3
> -
s 50 1.0 S
£ A 3
g o b 00 2
] V'V ¥eH V 8
c - c
S 50 10 @
S -100 ]
S } o
3 150 . 203
g — Rainfall — Max. Temp. 2
"—';'zooggsgfzm:ﬁﬁgggggggggagggggowv_3'03
a S22 SSSBLTERLLRRKER =
7 . . . R . 25
0 (b) DJF inflow discharge anomaly in the Cantareira region
E “ 8
=~ 30 =1
5 2
15 =
€ 10 S
E | —_
-10 3
-§ -30 3
2 5 ~
T 50
w —Discharge —SPMA population
8 .70 e | e | : — 0
o~ <r © o) o N N © [eo] (=) o <t © e (=] N < © (o] o N = © f=} o N s
838855555883 8888888888¢8¢8¢E¢%

Figure 2. Time series of (a) rainfall (mm month™) and maximum air temperature (°C) anomalies over the Cantareira reser-
voir system region from 1961 to 2015; (b) inflow discharge anomalies (m°/s) at the Cantareira reservoir system during 1961
to 2015 (in blue) and population (in millions) in the SPMA (in green). Anomalies are relative to the 1961-90 long term mean
and for the austral summer season December-January-February. Data comes from SABESP (discharge) and from the state of
Sao Paulo Municipality (population).
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Figure 3. 500-hPa geopotential height (contours) and anomalies (color) during (left) 1-15 January 2014, (center) 16-31 Jan
2014, and (right) 1-15 Feb 2014. All units are in meters.

in the southwestern Amazon over the Madeira and Beni river basins in the western Brazilian Amazon and Boli-

via [11].
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Usually, broad barotropic warm core quasi-stationary anticyclones that extend almost throughout the entire
troposphere are classified as “blocking highs”. Blocking systems are related to low level zonal circulation and
jet stream splitting that cause the suppression of baroclinic transient activity and persistent rainfall/drought or
cold/warm surges depending on its relative position. Blocking anticyclones typically occur at middle latitudes,
especially over the Pacific Ocean [12] and last around 7 - 8 days, with cases longer than 15 days being extreme-
ly rare [13]. Although strong sea surface temperature variability during 2013 and 2014 has been related to strong
temperature anomalies in North America [14], blocking over the subtropical Atlantic Ocean is rather insensitive
to sea surface anomalies in the Pacific Ocean. However, [5] found that the South Atlantic blocking highs are
traced diagnostically to a warm tropical West Pacific SST. Persistent blocking and hence clear skies induced
strong warm anomalies over the Atlantic Ocean that lasted until May 2015 (www.cptec.inpe.br/clima).

According to our own calculations, the blocking high lasted around 45 days between January and February
2014. The study by [6] for the summer of 2014 in the South Atlantic indicated that during this long-lasting
blocking episode there was a sequence of 30 consecutive dry days. A similar mechanism was observed during
drought events in other regions of the world. In North America, [15] and [16] demonstrated that extreme preci-
pitation deficits and drought over California during early 2013 were due to the blocking by persistent high ano-
malies over the northeast Pacific.

3.2. Regional Warming and Drought in 2014 and 2015

Observed changes in regional temperature and precipitation can often be physically related to one another; dry
conditions favor more sunshine and less evaporative cooling, and drought is a result of low precipitation and/or
high temperature that determine soil moisture deficiency. Higher regional temperatures contribute to the severity
of droughts by means of a drier soil, leading to a warmer/drier and expanded planetary boundary layer as shown
by the positive 500 hPa anomalies detected in southeastern Brazil during DJF 2013/14 by [9], and thus reducing
thermodynamic instability and inhibiting convective precipitation [17]. Figure 2(a) shows that regional maxi-
mum temperatures over the Cantareira region have been increasing since 1961, consistent with rainfall reduc-
tion.

Figure 4 shows that during 1961-2015 the number of drought episodes—both short and long term—has in-
creased as compared to 1961-2000. While dry episodes lasted up to 4 months in 1961-2000, dry periods in the
6 - 12 month time scale were more frequent in 1961-2015. This suggests that dry periods were longer in the re-
cent decade. In the same vein, Figure 5 shows that the Cantareira region experienced the most severe drought
during the austral summer of 2014, and that this year corresponds to the warmest year in the region since 1961
(94.5 mm, 31.4°C). Other drought years, such as 1971 (153.4 mm, 30.7°C), 2001 (153.4 mm, 30.7°C) and 2015
(160.0 mm, 30.1°C) were also among the six warmest years during that period. As a reference, the mean summer
rainfall (1961-1990) is 249.9 mm, and mean maximum temperature is 28.7°C.

From Figure 5, warm summers as in 2013/14 are associated with low precipitation. The correlation between
DJF rainfall and maximum temperature over the Cantareira region reached —0.69, significant at the 0.01 level.
The summer of 2013/14 was the driest and warmest since 1961, with record maximum temperatures, and that
together with an increase in water demand for a growing population generated the water crisis that has affected
the SPMA since the austral summer of 2014. From Figure 4 and Figure 5, it is observed that the long-term
warming in the region has contributed to an increased risk of severe drought and a deepening of the impacts of
the water crisis, as seen in 2014 and 2015, but this warming alone cannot explain the circulation features leading
to the rainfall deficiency. The water crisis can be explained by a combination of higher temperatures that deter-
mined a larger water use for an increasing population, but we do not present any evidence that such atmospheric
conditions have become more prevalent as a result of anthropogenic climate change. What we can say is that the
impacts of this drought and the resulting water crisis have in fact been consequences of increased water use in a
warmer summer, when discharges into the Cantareira system were very low. This is confirmed by [18] who
show that anthropogenic climate change is not found to be a major influence on the drought of 2013/14 and
2014/15, whereas increasing population and water consumption increased vulnerability.

4. Hydrological Context and Impacts of the Water Crisis

The current drought seems to have started in 2011, as suggested by [10]. The mean annual tributary discharge
into the Cantareira system is 44.1 m*/s (1930-2013) Figure 6. In 1953 it was only 24.6 m*/s and in 2014 it

()


http://www.cptec.inpe.br/clima

C.A. Nobre etal.

100 | . 100
: \ Frequency and duration of extreme dry

\ periods in the Cantareira region

10 | 10

Number of extreme dry periods
(syjuow) uoneanp ybnoaqg

| 1
0o 1 2 3 4 5 6 7 8 9 10 11 12 13

SPI (months)

Figure 4. Frequency and duration of droughts as a function of time period for the Cantareira reservoir region. The blue di-
amonds represent the Standardized Precipitation Index (SPI) based on 40 years (1961-2000) and red circles the SPI based on
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droughts (dashed) and vs. duration of droughts (solid).
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Figure 6. Annual cycle of the inflow discharge into the Cantareira reservoir system (m%sec). Black line shows the 1930-
2013 long term mean, and orange line shows the mean minimum discharge during 1930-2013. Some dry years are shown:
pink line shows the year 1953; green line shows 1964; red line shows 2014; and blue line shows 2015. We consider the hy-
drological year November-October.

reached its lowest at 11.3 m*/s. Mean discharge in the summer (Nov-Mar) of 2014 was 17.9 m%s and in 2015 it
was 24.0 m*/s, far below the average summer discharge, 59.8 m%s (70.0% and 60%, respectively), for the period
1930-2013. The 1953/54 rainfall deficit prompted construction of the Cantareira Reservoir system [19]. After
this, longer-term planning by regional governments has fallen short, and many residents are already enduring
sporadic water cutoffs, some lasting for many days. The Cantareira reservoir system reached critical conditions
in early 2015. Storage levels were only 5% of its 1.3 billion m® capacity in January 2015 and 15% at the end of
the rainy season in March 2015.

According to the state of Sdo Paulo official site (http://www.emplasa.sp.gov.br) the urban area of the SPMA
increased from 200 km? in 1930 to 2407 km? in 2002, a factor of 12 in seven decades, and the population went
from less than 2 million inhabitants in 1940 to almost 20 million by 2014 (Figure 2(b)). In 1980, when the Can-
tareira water supply system became fully operational, the population was 12.6 million. Lower rainfall decreased
water availability, and higher temperatures led to increased evapotranspiration water use—in agriculture, indus-
try, and people’s homes. The city’s rapid development over recent decades had increased its vulnerability: pop-
ulation growth increased water demand; forests and wetlands that had historically soaked up rainwater and re-
leased it slowly into reservoirs were destroyed; and poor-quality infrastructure continued to leak some 30% - 40%
of the system’s water. Since 2014, SABESP has already reduced pressure in the pipes to force conservation and
to reduce losses from the leaks, a strategy that has cut off running water to millions of customers for hours and
even days, depending on where people live.

The drought’s pervasive impacts are enormous, hobbling industry and agriculture, hampering operations at
hospitals, and activities at schools. The most direct impact, obviously, has been a lack of water that has ham-
pered the functioning of schools, hospitals and businesses. Agriculture has suffered: the price of products such
as tomatoes and lettuce increased by around 30% at the height of the drought; other affected crops included sug-
ar cane, oranges and beans. As a consequence, the sugar cane harvest for 2014/15 was about 5% lower than in
previous years coffee and fruits should show a reduction of between 15% - 40% in Sao Paulo State, and soybean
production was about 55 million MT lower than in previous years [20]. Parts of the city relied on water-trucks
for their supply during 2014 and most of 2015.

The current water crisis and the water restrictions affect Brazilian agribusiness, and there are projections of
losses of about R $20 billion (about US $5 hillion) in the agricultural sector for 2014 [20]-[22]. This represents a
reduction of about 6.7% as compared to the income from the sector of R $300 billion in 2013. Meanwhile, the
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number of forest fires in the region increased by 150% from 2013 to 2014. Electricity generation has also been
affected. More than 70% of Brazil’s electricity supply comes from hydroelectric power, and around 70% of this
is generated in the Sdo Paulo region. By the end of 2014, the reservoirs supplying this power generation were
almost dry. As a result, energy prices were predicted to increase by 20% - 25% in 2015. The effects of the water
shortage, including water rationing, increased water bills, and other inconveniences have even led to protests
and social unrest in some parts of the city [20].

According to Munich-Re [21], the absence of rain during 2014 in southeast Brazil had a severe effect on the
agricultural sector, and the overall loss from this drought so far has been estimated at US $5 billion, making it
the 5" worst natural disaster in economical terms worldwide in 2014. Swiss-Re estimated the damages in 2014
to be on the order of US $3 billion [23]. Moreover, origins of the current water crisis go beyond the rainfall de-
ficiency, to include an array of interconnected factors: the city’s surging population growth in the 20" century; a
chronically leaky system that spills vast amounts of water before it can reach homes; the destruction of sur-
rounding forests and wetlands that have historically soaked up rain and released it slowly into reservoirs; and the
increase in water use for the population due to warmer summers.

5. Conclusions

The climatic factors influencing the drought in Sao Paulo are related to changes in atmospheric circulation that
affect large-scale weather patterns over the adjacent Pacific and Atlantic sectors. Over the southeastern South
America-South Atlantic sector, atmospheric conditions are such that they block the passage of cold fronts from
the south and moisture from the Amazon region, leaving dry conditions over southeast Brazil with wet condi-
tions observed over western Amazonia and southern Brazil during austral summer. These blocking conditions
persisted for 45 days during the summer of 2014, something not seen since 1961.

The complexity and severity of the observed drought impacts coupled with regional warming have increased
the amplitude of the water crisis in the SPMA. The drought during the summer of 2013/14 generated the worst
water crisis in Sao Paulo since 1961. The fact that the summer season of 2014 was the warmest in 55 years
shows that the water crises during 2014 and 2015 are a relevant example of increased vulnerability to climate
change due to human-caused increases in temperature. While we do not find an increased probability of drought
due to human-induced climate change or due to deforestation in the Amazon region [24], there is evidence that
there is an increased risk of droughts of the intensity of that observed in 2014 due to the increased warming seen
in the region since 1961.

After the droughts of 1953, 2001 and now in 2014 it is clear that the SPMA is vulnerable to water scarcity.
The socio-economic-political situation, including larger water demand for a growing population may have ag-
gravated the situation, generating an acute water crisis that is in its second year. As such, resilience depends on
numerous factors; but how populations will cope with disasters of various magnitudes is largely dictated by po-
litical actions, socioeconomic development and education. Populations and governments in the SPMA and in
Brazil need to raise awareness about limited freshwater resources so the present sets the right stage for a sus-
tainable future. Resilience depends on numerous factors among them to increase water availability for a growing
population by updating the water transportation system to reduce leaking, and perhaps invest in larger water
storage systems to take advantage from other rivers in the region, such as the Paraiba do Sul. However, how
populations will cope with disasters of various magnitudes is largely dictated by political actions, socioeconomic
development and education.

Ongoing studies assess the link between climate change and human induced warming and persistent South
Atlantic blocking highs over southeastern Brazil, and this understanding will be crucial in characterizing the fu-
ture risk of severe drought.
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