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Abstract 
Technology trends such as Software-Defined Networking (SDN) are transfor- 
ming networking services in terms of flexibility and faster deployment times. 
SDN separates the control plane from the data plane with its centralised ar-
chitecture compared with the distributed approach used in other management 
systems. However, management systems are still required to adapt the new 
emerging SDN-like technologies to address various security and complex man-
agement issues. Simple Network Management Protocol (SNMP) is the most 
widespread management protocol implemented in a traditional Network Man-
agement System (NMS) but has some limitations with the development of SDN- 
like services. Hence, many studies have been undertaken to merge the SDN-like 
services with traditional network management systems. Results show that merg- 
ing SDN with traditional NMS systems not only increases the average Manage-
ment Information Base (MIB) polling time but also creates additional overheads 
on the network. Therefore, this paper proposes a dynamic scheme for MIB 
polling using an additional MIB controller agent within the SDN controller. 
Our results show that using the proposed scheme, the average polling time can 
be significantly reduced (i.e., faster polling of the MIB information) and also 
requires very low overhead because of the small sized OpenFlow messages 
used during polling. 
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1. Introduction 

With the popularity of cloud computing features e.g., network virtualisation [1] 

How to cite this paper: Biswas, I., Abu- 
Tair, M., Morrow, P., McClean, S., Scotney, 
B. and Parr, G. (2017) A Dynamic Approach 
to MIB Polling for Software Defined Moni-
toring. Journal of Computer and Communi-
cations, 5, 24-41. 
https://doi.org/10.4236/jcc.2017.55003 
 
Received: January 10, 2017 
Accepted: March 20, 2017 
Published: March 23, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.55003
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.55003
http://creativecommons.org/licenses/by/4.0/


I. Biswas et al. 
 

25 

[2], live migration [3] [4] etc., various network services are deployed on the Inter-
net for dynamic resource provisioning. However, these advances generate a con-
siderable amount of Internet traffic volume and require advance network man-
agement for security and high efficiency. The conventional network devices are 
designed and configured for basic Internet access services, and therefore, are static 
and inflexible in their physical hardware implementation. As a result, existing net- 
working devices requiring frequent updates as new network services are continu-
ously deployed. 

Provisioning of network systems is very important for network management 
including network operations [5]. Large data centres (DCs) or enterprises are also 
often under threat from new security issues in NMS that have arisen due to the fast 
growth of the networks; analysis using traffic monitoring is a key for network uti- 
lisation. SNMP [6] with its popularity in traditional NMS is mostly used for ex-
changing management information between network devices. An efficient man-
agement system using SNMP can monitor the network effectively and usually pro-
vides network utilisation information per trunk or link. A MIB stores this infor-
mation while agents run on the network devices, and is widely supported by all 
network devices.  

Traditional management systems show inadequacies when deployed in DCs 
and enterprises with new SDN-like services [7] [8] [9] although they have gained 
many achievements. For example, SDN with a traditional management system will 
create inefficiencies in data forwarding within complex management systems. 
Therefore, new management mechanisms are required to satisfy both users and 
the network operators for a robust network management [10]. 

Network virtualisation techniques allow service providers to slice infrastruc-
ture resources, enabling a flexible deployment of new network technologies. SDN 
breaks the old hardware barrier by introducing reconfigurable and extensible 
modules in network devices by separating the control plane from the data plane. 
SDN increases network flexibility and service agility with resource provisioning. 
Hence, continuous monitoring of SDN traffic is also required for utilisation of 
the network resources. SDN manages data flows and switching using the Open-
Flow protocol [11] whereas, SNMP has been widely used in TCP/IP-based net-
works for the monitoring of network elements and hosts. However, the moni-
tored devices are represented as managed objects and defined as a MIB. Network 
traffic statistics via SNMP correspond to periodic polling of MIB objects (for 
example, if Table objects in MIB II). Hence, periodic MIB polling is required for 
continuous monitoring. 

SNMP largely deals with the management plane where focus is on collecting 
information about the traffic and status of the elements and is typically con-
sumed by a NMS through polling the information periodically. Hence, the man-
agement plane monitors and configures the network element. Whereas, the con-
trol plane defines how packets flow through the network element. OpenFlow, by 
definition, focuses on the control plane but also supports the management plane 
of the network. 
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OpenFlow-like protocols are required to implement the SDN paradigm using 
the new network elements to incorporate Network Function Virtualisation [12]. 
Real-time higher level executable policies across the management control plane be- 
tween the main network elements are also required to expose underlying perfor- 
mance attributes across the end-to-end system. Hence, new enterprise MIB sche- 
ma is required for agile cloud enterprise MIB data structure. 

The work described in this paper is conducted as part of a wider US-Ireland 
funded project concerned with enabling efficient and secure cloud computing 
for high capacity applications, including dynamic optical Terabit scale network-
ing. Software Defined Monitoring with a MIB will necessitate real-time higher 
level executable policies across the management control plane between the main 
network elements. The MIB schema and syntax together with a policy engine will 
be capable of allowing the SDN controller to make real-time decisions about the 
cost and benefits of migration and/or replication. In particular, in this paper we 
initially used the SNMP protocol for MIB polling through the SDN controller 
i.e., merging the SDN controller with old NMS and found that using SNMP not 
only increases the average MIB polling time but also creates significant overheads 
on the network. Hence, this paper proposes a dynamic scheme of MIB polling us-
ing an additional controller inside the SDN controller. Our results show faster po- 
lling of the MIB information and very low overhead in the network compared to 
the NMS MIB polling. 

The rest of the paper is organised as follows: Section II describes the related 
work in this area and how our work is unique; Section III provides details of the 
Software Defined Monitoring techniques and illustrates our proposed scheme. 
Section IV describes the experimental setup and configuration for this work. Sec-
tion V presents the results with discussions comparing the old NMS with SDN and 
our proposed scheme. Finally, section VI provides some conclusions and a view 
for future work. 

2. Related Work 

Many research studies related to network management have been undertaken. 
However, new network architectures with NMS required SNMP-like network ma- 
nagement protocols to manage the architecture effectively. An approach for man-
aging SDN using traditional NMS is presented in [5], where to verify the approach, 
they have built and implemented a prototype in their own test bed. The approach 
was deployed in virtual networks and services and claimed that SDNMP works 
well in practice. In [13], a SNMP based model CNMM has been developed for 
cloud networks. The proposed model provides a solution to manage the growing 
traffic in the cloud and improve communication of manager and agents as in 
SNMP. 

A management architecture and Manager-agent communication model has 
been modelled in [14] to coordinate the information residing on the single ele-
ments of the multi-stage router. The model presents a unified view to the exter-
nal network management station concerning requests from SNMP. 
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Much research also has been conducted without using the SNMP for Software 
Defined Monitoring. John et al. proposed a split selected monitoring control func-
tionality onto node-local control planes in [15]. It takes the advantage of process-
ing capabilities on programmable nodes. Their approach is a rate monitoring 
function in SDN that is implemented using node-local control plane components 
introducing a messaging bus for simple and flexible communication between mo- 
nitoring function components as well as control and management systems. They 
claim that their rate monitoring approach generates only a tiny fraction of the 
monitoring traffic from comparable SNMP and OpenFlow implementations, while 
providing the same information granularity. 

However, the main issue here is in considering the entire infrastructure as one 
unified service production environment and therefore, the challenge is to pro-
vide up-to-date, accurate, and detailed monitoring information to orchestration 
and control layers in a scalable way. 

In optical networks, Non-SDN Reconfigurable Optical Add-Drop Multiplexer 
(ROADM)s are not always able to update hardware or software in the ROADMs 
to adapt legacy SDN architecture. In [16], a software defined monitoring archi-
tecture has been deployed using SNMP protocol for Optical Non-SDN ROADMs. 
They have proposed an architecture using a proxy that translates OpenFlow 
messages sent by Open Network Operating System (ONOS) into SNMP mes-
sages to configure the ROADMs. The solution is for flexible monitor and manages 
an optical network via SDN architecture. They claim that their solution is also able 
to recover and reroute wavelengths when a link is down. The adapted solution to 
legacy networks does not require any upgrade on the optical network elements. 
The proposed SDN architecture is adapted to include legacy non-SDNROADMS. 

Although they claim their proposal does not require any software modifica-
tion of the SDN controller or ROADM SNMP agent, the issue in such architec-
tures is that it uses a proxy that translates the of messages sent by the controller 
into SNMP commands to apply the desired configurations on the ROADM and 
vice-versa. This can increase delay in a large data centre or inter-data centre net- 
works and reduce the monitoring performance. 

In [17], an efficient scheme for performance management is developed to col-
lect traffic statistics data via the SDN controller plane. The scheme proposes a 
periodic collection and transfer of MIB objects for bulk traffic statistics collec-
tion. The scheme is developed in the controller plane and provides a northbound 
interface for upper network management applications. Instead of using SNMP 
and MIBs, the scheme is implemented by periodically gathering statistics infor-
mation of flow tables from SDN-enabled switches via the OpenFlow protocol. 
However, the issues here are the various OpenFlow packet sizes that create over- 
heads in the network. The architecture also considers possible performance deg-
radation in the SDN controller for additional controllers and distributed task 
queues to achieve high availability and scalability.  

However, our work is motivated for such architectures and considered very 
small packets for SDN monitoring. Therefore, our scheme not only reduces the 
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overall network overhead but also achieves high speed data polling. In summary, 
this paper is unique in the following aspects: 
 This work uses small packet sizes i.e., only 64-byte OpenFlow packets for SDN 

monitoring and hence can perform high speed polling. 
 Small sized packets will also reduce the overall network overhead for SDN mo- 

nitoring techniques and therefore can improve the QoS of the data centre. 
 The architecture achieves high availability by ensuring reduced latency between 

the SDN controller and the developed additional MIB controller with scalable 
efficient task queues. 
The next Section describes old network management with MIB using SNMP 

protocol and proposes a dynamic approach of MIB polling in a software defined 
network for centralised network monitoring. 

3. Software Defined Monitoring 

This paper aims to develop a dynamic approach for MIB polling in SDN for mo- 
nitoring. Our proposed approach includes an additional MIB controller agent in 
the controller plane of SDN. The MIB controller agent is designed considering a 
loosely coupled architecture for MIB polling to support high availability and sca- 
lability as defined in OpenFlow 1.2 or later. 

3.1. Management Information Base (MIB) 

SNMP agents (e.g., Net-SNMP) are allowed to collect the management informa-
tion database from the device locally and make it available to the SNMP manager. 
Hence, the agent maintains an information database describing the managed de-
vice parameters. 

NMS uses this database for specific information and this commonly shared da-
tabase between the Agent and the Manager is called a MIB. A MIB is basically a 
collection of information for managing network elements. The MIB contains a 
standard set of statistical and control values defined for hardware nodes on a net- 
work. Private MIBs extends these standard values with values specific to a parti- 
cular agent. 

The MIBs contains of managed objects identified by the name Object Identi-
fier (Object ID or OID). Each Identifier is exclusive and represents specific fea-
tures of a managed device. However, the return value of each identifier could be 
different e.g. Text, Number, Counter, etc. Like a folder structure on PCs, OIDs 
are very structured, and follow a hierarchical tree pattern as shown in Figure 1. 
However, unlike folders all SNMP objects are numbered. Therefore, the top level 
is the root and after the root is ISO with the number “1”. ORG is the next level 
with the number “3” as it is the 3rd object under ISO. OIDs are always written in 
a numerical form, instead of a text form. 

For example, three object levels are written as 1.3.0 not iso\org\standard. As 
shown in the figure, a typical object ID will be a dotted list of integers. Hence, 
the OID in RFC1213 for sysDescr is .1.3.6.1.2.1.1.1 and using the OID the system 
can get the hardware and software information used on the host. 
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Figure 1. The MIB registered tree. 

3.2. NMS with SNMP 

In NMS, SNMP polls MIB information and gets a response from its MIB agents 
(e.g., switches, routers). Figure 2 shows a network management system that polls 
information by sending a request through the SNMP Manager and gets a response 
from a SNMP agent. An agent can send a spontaneous TRAP to the NMS if re-
quired. SNMP TRAPs are initiated by the agents and the agent sends the TRAP 
to the SNMP Manager on the occurrence of an event. 

NMS using SNMP fetches MIB information directly from network devices for 
traffic monitoring. The collection of managed object values is performed periodi-
cally and then the information can be automatically transferred to a database. Un-
der the NMS control via SNMP protocol, polling is still a popular mechanism to 
gather information from the managed networks. Most NMSs collect data from 
network elements directly via SNMP. However, in recent developments of data 
centre networks, OpenFlow based SDN requires monitoring of network devices 
and there has not yet been sufficient research done on SDN monitoring. 

3.3. NMS with SDN 

This work first aims to develop a MIB polling mechanism for SDN monitoring 
through the NMS using SNMP. As shown in Figure 3, we have introduced a 
MIB manager at the NMS to bring a change in management paradigm from a 
distributed NMS to a centralised SDN control. The MIB manager fetches MIB in-
formation from the SDN controller. The manager provided in our NMS is to get 
MIB information through the management plane service over the SNMP protocol. 
The MIB data are delivered in the SDN when requested. Therefore, NMS can eas-
ily access MIB data for monitoring using SDN controller as supported in Open-
Flow. 
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Figure 2. MIB polling scheme with NMS initiated in K-ary fat tree topology. 
 

 
Figure 3. Illustration of MIB polling. 

3.4. The SDN MIB Controller Agent  

SNMP was envisioned for exposing data to external applications for remote mo- 
nitoring. A distinctive feature of SNMP includes the capability of sending trap 
messages so that the agent device can push information about their status or 
condition to the management plane. However, SNMP has many shortcomings, 
including being limited in the number of data types it can handle. The vendors 
can extend the SNMP OID in their own numbering scheme but the extension 
does not solve the whole problem with the advances of the emerging technolo-
gies like SDN. 

Hence, in this paper we have introduced a MIB controller agent in the SDN 
controller using the RYU SDN Framework development [18] as shown in Figure 
4. The MIB controller agent can set and query MIB configuration parameters in 
the switch with the SET_MIB_CONFIG and GET_MIB_REQUEST messages. 
The switch responds to a MIB value request with an GET_MIB_REPLY message. 
Moreover, like the OpenFlow switch reply messages, it does not reply to a request 
to set the configuration as shown in Figure 5. 
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Figure 4. MIB polling scheme with proposed approach in K-ary fat tree topology. 
 

 
Figure 5. Illustration of MIB Polling in SDN environment. 

 
The MIB controller agent in the SDN controller is implemented as a control-

ler agent that sends MIB requests to a TCP port by using Netcat [19] to generate 
Traffic in a Mininet topology. In this work, for simplicity we have stored the ex-
act MIB information in the Switch agent memory cache as we have used for the 
SNMP MIB information. Figure 6 shows the state diagram used for MIB polling: 
 In Step 1: The GET_MIB_REQUEST is sent by the controller, which is a small 

TCP Packet using Netcat. We have used 64-byte frames to generate high packet 
rates and force high packet processing in the OpenFlow switch from the MIB 
controller. 

 In Step 2: With the help of Wireshark, we are able to trace corresponding 
Data-path IDs (DPID) of the OpenFlow switch and we have maintained a TCP 
Port to DPID table for this experiment to dynamically forward the MIB request 
to the memory cache. 
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Figure 6. State diagram of MIB polling in SDN environment. 
 
 In Step 3: The DPID finally requests the MIB information from the Memory 

cache. 
 In Step 4: The switch returns the MIB info as OpenFlow small 64-byte packets 

to the DPID. 
 In Step 5: The info is return as the GET_MIB_REPLY to the SDN controller 

directly. 
For better performance, the MIB information is written in an in-memory cache 

maintaining a single list. The MIB data then can be dynamically configured via the 
northbound interface of the controller for monitoring. We have used the miss_ 
send_len field in the OpenFlow that defines the number of bytes of each packet 
sent to the controller to reduce the packet size to generate high packet rates and 
force high packet processing in the OpenFlow switch from the MIB controller 
[20]. The miss_send_len is set to 64-bytes for small packets, whereas the default 
is flexible in OpenFlow version 1.3. The ofctl_v1_3 sends 0-byte length data in a 
packet_in message if max_len is not specified, which is 65,535. 

In NMS, SNMP allows Protocol Data Units (PDUs) sized up to the Maximum 
Transmission Unit (MTU) of the network i.e., Ethernet allows up to 1500-byte 
frame payloads [21]. Therefore, in each MIB polling, our proposed approach can 
reduce noticeable network overhead. Moreover, in each polling interval, we can re- 
duce overhead of (16 × 2872 = 45,952 byte) or 45.9 kB from 16 active MIB switch 
agents at one polling compared to the NMS MIB polling approach (for a general 
calculation, here we are not considering the retransmitted packets). 

4. Experiments and Results  
4.1. Setup and Configuration  

We have used Mininet version 2.2.1 and OpenFlow version 13 running on an In-
tel(R) Core (TM) i7 3.40 GHz CPU with 16 GB of memory for the experiments. 
All the experiments are done over 1000 runs with 0.95 or, 95% confidence interval 
[22]. All the polling times in this paper are measured using Wireshark traces [23]. 
Table 1 shows the configuration details for the fat tree topology. 

We started some initial capacity variation experiments using SNMP and the 
SDN controller in a fat tree topology to check the Mininet topology. SDN com- 
menced with SNMP protocol shows that the average polling time is lower with re-
spect to the higher link capacities between the Top of Rack and the Aggregate 
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Table 1. Configuration of K-ary fat tree topology: Scenario 1. 

Parameters Value 

Servers/Hosts 16 

Top of Rack switches 8 

Aggregate switches 8 

Core switches 4 

Bandwidth 

Host to Top of Rack (EDGE Level) switches 1 Gbps 

Aggregate to Top of Rack (EDGE Level) switches 1 Gbps 

Aggregate to Core switches 1 Gbps 

Polling Interval 60 sec 

 
level switches. We found the gigabit links takes only a few milliseconds for MIB 
polling on average whereas, the average time for MIB polling can be up to 50 
times higher using 100 Mbps links compared to the gigabit links as expected. We 
have performed a number of experiments described in various scenarios; the 
next sub-sections present the experimental results: 
 The first scenario considers a comparison between the developed MIB manager 

in the NMS application with the proposed additional MIB controller agent at 
the SDN without background traffic. 

 The second scenario continues the comparison considering various amounts 
of background traffic. 

4.2. Test Scenario 1 

The first scenario is chosen to measure the polling speed considering a data cen-
tre with no background traffic. We have compared the Average Polling time for 
the developed MIB Manager in the NMS with the proposed MIB controller agent 
in the SDN by varying the MIB switch agents. Using NMS, the MIB Manager 
gets the bandwidth of the interface to the MIB switch agent. The If Speed variable 
is used in this case that replies with the speed of the interface as reported in the 
SNMP if Speed object. Our proposed approach requests similar MIB information 
that has been stored in the MIB switch memory cache, considering the fat tree to-
pology using Mininet. 

Figure 7 shows that the Average Polling time initiated by the MIB controller 
can be up to nine times lower compared to the polling initiated by NMS. The 
reason is, when the NMS required any polling, it uses the MIB manager at the 
application level and send the request via the SDN controller. The SDN control-
ler checks its port information and forwards the request to the associated MIB 
agent. Hence, this requires a number of stages to send the request to the MIB 
switch agent and certainly add delays. In contrast, our approach directly sends 
MIB request to the switch and the switch fetches the MIB info from the Memory 
cache and returns back directly to the SDN controller. 

The figure also shows that with the number of increased active MIB switch 
agents, the average polling time difference between the two approaches increases. 
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Figure 7. Average polling time [ms] with No backgound traffic. 
 

For example, while 4 MIB switch agents are active, the average polling time ini-
tiated by NMS is 26 ms, whereas our approach shows only 7 ms. However, with 16 
Active Switch Agents the polling time initiated by NMS is 460 ms, whereas the 
proposed approach can take up to 96 ms. 

4.3. Test Scenario 2 

In the second scenario, we have considered various amount of background traf-
fic while MIB polling to observe the overall network impact. Table 2 shows the 
configuration details used in this scenario in the fat tree topology. With various 
amounts of background traffic, many polling request packets are sent but didn’t 
get a response within the keep alive time and therefore are retransmitted by the 
NMS. Our observation is the number of retransmissions significantly increases 
with the increase in background traffic during the MIB polling initiated by the 
NMS. We have used iperf [24] with UDP packets in Mininet to create back-
ground traffic flows. 

With 20% background traffic, Figure 8 shows that high retransmission hap-
pens due to NMS application delays during MIB polling, i.e., packets are lost and 
no reply before the keep alive times. For example, with 4 active Switch agent, 
similar average polling times are observed by using both NMS and proposed ap-
proach, which is less than 1sec. However, the average polling time can be very 
high i.e., up to several minutes, whereas our MIB controller agent does not re-
quire any MIB Manager from the application plane and anticipates that latency 
can be shorten and polling time is minimized as shown in the figure With 16 
Active Switch Agents, the figure shows that the average polling time can be up to 
36 sec, whereas the proposed approach shows that the average polling time can 
be few seconds. 
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Figure 8. Average polling time [Sec] with background traffic (20%). 
 
Table 2. Configuration of K-ary fat tree topology: Scenario 2. 

Parameters Value 

Servers/Hosts 16 

Top of Rack switches 8 

Aggregate switches 8 

Core switches 4 

Bandwidth 

Host to Top of Rack (EDGE Level) switches 1 Gbps 

Aggregate to Top of Rack (EDGE Level) switches 1 Gbps 

Aggregate to Core switches 1 Gbps 

Background Traffic UDP 

Background Traffic with respect to Network bandwidth 20%, 50% and 80% 

Polling Interval 60 sec 

 
The impact of the retransmissions can be observed in Figure 9, the overall 

packet drop was less than 1% when the number of Active MIB Switch is 4 using 
both approaches and it has increased up to 11% when the number of switches 
has increased to 16 using the NMS MIB polling approach. However, using the 
proposed approach the average packet drops observed is 2% for 16 MIB switch 
agents. 

We have also obtained full sets of results considering 50% and 80% back-
ground traffic. Figure 10 shows that considering 50% background traffic on the 
link, more requested MIB packets are lost or, the MIB info reply has not arrived 
within the keep alive time compare to the 20% background traffic. For example, 
the figure shows that the average response time is less than a second while the 
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Figure 9. Average packet drops with background traffic (20%). 
 

 
Figure 10. Average polling Time [Sec] with background traffic (50%). 
 
number of active switch agents is 3 using both approaches and it can increase up 
to 56 sec using NMS MIB polling. However, using the proposed approach it in-
creases only up to 5 sec. 
The packet drops graph considering 50% background traffic also shows that the 
average packet drops also increases compared to 20% background traffic as 
shown in Figure 11. It can be up to 22% for 16 active switches using NMS MIB 
polling, whereas using our approach the packet drops increased to 4%. 

Considering 80% background traffic, the average polling time can be very high 
i.e., up to several minutes using NMS MIB polling, whereas our MIB controller  
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Figure 11. Average packet drops with background traffic (50%). 
 
agent does not required any MIB manager from the application plane and it is 
anticipated that latency can be shorten and polling time is minimized as shown 
in Figure 12. For example, considering MIB polling using NMS, many retrans-
missions occur while 16 active switch agents are replying to the MIB requests 
and the average polling time observed is up to 118 sec. However, our approach 
shows that the average polling time is less than 6 sec. 

The effect of the increased retransmissions can be observed in Figure 13, 
where the overall packet drops can be up to 40% using the NMS MIB polling 
approach when the number of active MIB switch agents is 16. However, using 
the MIB controller as proposed in this paper, the maximum overall packet drops 
can be around 6%. 

The proposed approach proposes an additional MIB controller in the SDN 
that provides centralized control and does not require querying devices indi-
vidually. The MIB controller in the SDN controller is implemented as a control-
ler agent which sends MIB requests by using OpenFlow messages with small 
packet size. Hence, by reducing the overhead our results show that using a K-ary 
Fat tree topology in various test scenarios the proposed approach outperforms a 
comparative traditional SNMP based polling. 

An alternative to the K-ary Fat topology has been developed known as leaf- 
spine where a series of leaf switches form the access layer known as “pine 
switches”. The administrators claim that spine switches are one hop away and 
minimise the latency and the likelihood of bottlenecks between access-layer 
switches. The proposed approach sends small packets for MIB requests using 
OpenFlow messages and using leaf-spine architecture should not deteriorate the 
polling performance as the approach is not affected by latency and not affected 
by bottlenecks between access-layer switches. 
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Figure 12. Average polling time [Sec] with background traffic (80%). 
 

 
Figure 13. Average packet drops with background traffic (80%). 

5. Conclusions and Future Work  

Network monitoring is essential for network management where MIB polling 
from network devices is well recognised. Traffic monitoring using MIBs helps 
network operators understand network traffic volume and bandwidth utilisation, 
and is also important for network planning and design. In this paper, we have 
proposed a dynamic approach to effectively collect MIB information for SDN, and 
implemented the proposed architecture with an SDN controller to confirm its fea-
sibility. Furthermore, we addressed issues in the MIB polling initiated by the NMS 
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via SDN and proposed effective solutions. 
However, sending small packets could result in lower throughput and therefore, 

a network administrator’s choice is a trade-off between the throughput and the 
polling response time in the case of high speed polling for network monitoring 
without interfering with the network data traffic. Future work will further investi-
gate and develop high speed polling mechanisms considering high throughput in 
data centre environments by prioritizing the polling mechanisms within the man-
agement plane by developing new OpenFlow data compression techniques and 
scheduling algorithms. However, we expect the proposed scheme to be useful for 
many network management applications that require faster polling and continu-
ous networking monitoring with very low overhead in a real data centre envi-
ronment. 

In SDN, a flow could be related to Inter-DC or Intra-DC. Accordingly, it is pos-
sible to attain more detailed MIB traffic in SDN, for example, network traffic con-
sumed by an optical network or application. The low level optical attributes can be 
augmented with a formal illustration of the current network configuration and 
traffic load which will be closely coupled to the scheduling algorithms that will 
suggest reconfigurations to the SDN controller to be pushed down to the network 
elements. This formal representation of the network can monitor data from the 
network to be maintained on a per-link basis: average queuing delay, data loss, 
modulation scheme, encoding scheme, throughput, utilisation, jitter and other 
metrics that will become available from fast optical switching. Future work will 
propose an SDN architecture that will redesign including ROADMs. A proxy will 
be designed to translate the OpenFlow messages sent by the controller into SNMP 
commands to apply the desired configurations on the ROADM initially, without 
software modification of the controller or agent. This work will further provide 
such architecture by leveraging Packet Transport Routers and industry-leading 
optical systems into packet optical convergence architecture [25]. In this innova-
tive converged architecture, the data plane, NMS, and control plane will be tightly 
coupled together into a single consistent system. This will give service providers a 
complete view of the network with reduced complexity in provisioning, mainte-
nance, and troubleshooting events. This will enable a revolutionary and innovative 
solution for today that will be scalable and agile into the future. 
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