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ABSTRACT 

Temperature is often considered as a primary factor for microbial decomposition of soil organic carbon. Boreal forests 
are the large terrestrial carbon pool: if carbon stored in this region is transferred to the atmosphere as CO2 by a warm-
ing-induced acceleration of its decomposition, there will be positive feedback to global warming. It is reported that real 
issue regarding the release of carbon from soils to the atmosphere is how natural factors interact to influence decom- 
position of soil organic matter, so we observed mass losses (indicating decomposition rates) from litter and litterfall in a 
Northern Fennoscandia forest over 3 years under natural conditions. Our field survey has demonstrated that mass losses 
from most kinds of sample had moderate correlation with the temperature. Of the various samples, the canopy-gap litter 
alone had a greater rate (~70%) of mass loss. It is at least necessary to make a clear distinction of monitoring sites (un- 
der the canopy and in the canopy gap) when discussing the effect of climate on soil CO2 release from high-latitude for- 
ests. Though temperature, soil moisture and soil properties are prioritized in the issue of soil CO2 release, our results 
suggest that the fungi/bacteria rate and the wind-related mix/fragmentation are also important factors to be considered; 
however, this speculation is just tentative, and more detail research is called for. 
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1. Introduction 

The conversion of litter carbon (i.e. young soil carbon 
above the mineral soil) to CO2 by microbial respiration is 
one of the major processes controlling the terrestrial car- 
bon budget [1], and most ecosystem models assume that 
the temperature sensitivity of decomposition is identical 
for all types of organic matter (review in [2]). Global 
warming may trigger an unbalance between carbon sinks 
provided by plants and carbon sources from decomposi- 
tion, potentially causing an acceleration in CO2 release 
from the terrestrial ecosystem. Nearly half of the carbon 
stored in forested ecosystems is in boreal forests, and it is 
a source of anxiety that a notable characteristic of boreal 
forest soils is surface accumulations (~500 giga tons C) 
of organic carbon [3]. Since high-latitude regions have 
warmed faster than other parts in recent decades [4] and 
these regions will be intensively subjected to a warming 
climate in the future [5], the effect of warming tempera- 
tures on boreal forests may result in a dramatic increase 
in terrestrial carbon flux to the atmosphere. 

Soil organic carbon (SOM) is mainly divided into min- 
eral soil and litter (cf. [6]); as degradation of litter pro-

ceeds, SOM is transformed to organic acids and humins 
which accumulate in mineral soil. According to the data 
from 82 sites on five continents [7], increased tempera-
ture does not stimulate the decomposition of forest-
derived carbon in mineral soil. The dependence of mi- 
crobial decomposition on temperature is only known for 
young organic soil [8]. Yet another experiment suggests 
that SOM decomposition is affected by soil depth and 
experiment method, and the temperature sensitivity for 
passive SOM does not differ from that for labile SOM 
[9]. Anyway, the carbon input to the young organic soil 
from biomass is easily released to the atmosphere ac- 
cording to the current model- and observation-based con- 
cepts [2,8,9]. 

Not only temperature and soil properties but also soil 
moisture are also prioritized in the issue of soil CO2 re- 
lease [10]; e.g. there are drying/wetting cycles in natural 
conditions [11]. Nevertheless, the real issue regarding the 
release of carbon from soils to the atmosphere is how 
temperature, soil water content and other factors interact 
to influence decomposition of soil organic matter [12]. 
The climate effect on microbial decomposition of soil 
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carbon is generally represented by applying the variable 
Q10 temperature function [13]; Q10 values of ~2 at 30˚C - 
35˚C, increasing to 4 - 6 at 5˚C - 10˚C. However, it is re- 
ported that, after 5 years, there is no effect of a 5˚C warm- 
ing on soil CO2 efflux form boreal forests in Sweden [14]. 
Considering this report, we observed the decomposition 
rates over 3 years in a common spruce forest of the North- 
ern Fennoscandia (Figure 1(a)) in order to evaluate the 
climate effect under natural conditions. The obtained re- 
sults are presented in this paper. 

2. Materials and Methods 

Sixteen sample plots are located in a subarctic region of 
the Kola Peninsula (67˚51'N 32˚47'E to 66˚50'N 30˚12'E) 
(see Figure 1(a)). The monitoring site is situated in 
spruce forest with green mosses and dwarf shrubs (cf. 
picture in Figure 1(a)), and the O horizon in this site 
contains a rich amount of carbon (430 to 650 g·kg–1) [15]. 
According to a previous study on the biogeochemical cy- 
cle in this field [15], the annual input of biomass to the 
monitored litter layer is mainly composed of Picea ob- 
ovata Ldb (0.47 t·ha–1 needles, 0.47 t·ha–1 wood/branches 
and below 0.01 t·ha–1 bark) and dwarf shrubs (0.34 t·ha–1 
Vaccinium myrtillus L. leaves, 0.22 t·ha–1 Empetrum 
hermaphroditum leaves and 0.03 t·ha–1 Vaccinium vitis- 
idaea leaves).  

2.1. Sampling and Observation 

In our survey, litter is defined as plant materials (residues) 
which have already been in contact with the soil. The 
surface accumulations (O horizon) of SOM in boreal 
forests are basically identified as fresh litter (L layer), 
partially decomposed but recognizable Formultningss- 
kiktet (F layer) and relatively homogenous humus (H 
layer) [16]. We took litter samples mainly from the L la- 
yer (fresh litter) under the canopy and in the canopy gap 
(Figure 1(b)) in October of the 1st year; a small portion 
of F layer material was inadvertently mixed in, but we 
avoided the mixing of H layer and E horizon materials 
with the samples.  

The sampled litter contained reproductive and dead 
parts of the aforementioned various plants such as Picea 
obovata Ldb, Vaccinium myrtillus L., Empetrum hermap- 
hroditum and Vaccinium vitis-idaea. 

In our survey, litterfall (browned needles, leaves, etc.) 
is defined as plant materials which are still attached to 
the living plants. Avoiding yellow coloring and leachate 
loss, fresh litterfalls were also picked off from tree 
branches and dwarf shrubs present in the survey field in 
October of the 1st year.  

After each collected sample of 10 g was put in a syn- 
thetic mesh bag (10 × 10 cm) with breathability, these 
bags (15 replicates of a sample in each plot) were sealed  

 
(a) 

 
(b) 

Figure 1. Study area and arrangement of field survey. (a) 
Study area in boreal biogeography of European region: the 
border of the boreal region is shown with a bold line, and 
the distribution of spruce (Picea abies ssp. obovata) species 
is shown with bold dots (redrawn from [17]); (b) Sample 
collection and observation sites in the study area: in our 
field survey, litter is defined as dead plant materials which 
are present on the soil, and litterfall is defined as plant 
materials which are still attached to the living plants. Each 
sample was put in a mesh bag, and these bags were placed 
under the canopy and in the canopy gaps; i.e. all the sam- 
ples underwent the natural decomposition process. 
 
to prevent additional litterfalls from entering the bags, 
some of the sealed bags (n = 4 in each plot) were analy- 
zed in the same month as the collection (i.e. 0 year), and 
the rest were placed under the canopy and in the canopy 
gaps (Figure 1(b)); that is, all the samples underwent the 
natural decomposition process in the mesh bags during 
the survey period. 

2.2. Measurement and Interval 

Mass loss (percentage of the original mass) can be used 
to predict biodegradation-related carbon loss (indicating 
the rate of microbial CO2 respiration), and its measure- 
ment can be easily conducted by using a weight-mea- 
suring scale (review in ref. [18]). The sample bags were 
dried in a desiccator and then measured with respect to 
the following items: weight change of the sample bag (i.e. 
gross mass loss) and hydroscopic coefficient for conver- 
sion of sample weight to dry-base weight. Using quite a 
simple method—mass loss of the sample, we attempted 
to assess the climate sensitivity of a carbon pool so as not 
to isolate the decomposition of soil carbon from the local 
climate (i.e. natural conditions).  
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If data of total mass loss from soil incubations longer 
than one year are used to assess the SOM dependence on 
temperature, there is a possibility that the obtained value 
may be underestimated because respiration rates at all 
temperatures are close to zero at the later stage of in- 
cubation [9]. Viewed in this light, we set an interval of 
one year for data collection in the survey field. We ca- 
rried out measurement using the samples each October 
over 3 years. 

(a) (b) 

2.3. Data Processing 

The warmth index is defined as the yearly sum of the 
mean monthly temperature minus 5˚C for the months 
with the mean temperature above 5˚C (cf. [19]). There is 
the limitation in applying the Q10 value to the rate of 
SOM decomposition—the Q10 value is not adequate 
when simulating the effect of temperature on decom- 
position below 5˚C [20,21]. Considering the filed con- 
ditions and the Q10 temperature function (i.e. the tem- 
perature-decomposition relationship), we modified the 
interval of warmth index in order to adapt the index to 
the cold region of our survey; that is, the yearly sum of 
the daily mean temperature minus 5˚C for the days with a 
mean temperature above 5˚C.  

Mass loss of sample was determined as a percentage of 
the original mass, and their rates (%) were compared 
using statistic analysis of variance (ANOVA) with a 
probability value of 0.05. 

3. Results and Interpretation 

CO2 production by microorganisms is measurable at 
–39˚C [22], and microbial decomposition in the arctic 
ecosystem is relatively independent of temperature when 
moisture content is less than 20% [23]. The climate con- 
ditions recorded in our field were not so severe to micro- 
organisms: the annual mean temperature varied between 
+0.2˚C and –1.8˚C over our field survey. During the 
plant-growing season (mid-June to mid-September) at 
the daily mean temperature of 14.7˚C ± 1.4˚C standard 
deviation (SD), the site under the canopy was 5.2˚C ± 
1.8˚C (SD) cooler than the canopy gap, the throughfall 
(precipitation passing through the canopy) averaged 
62.8% ± 11.9% (SD) of gross rainfall, and the soil 
moisture in the monitored litter layer was 52.9% ± 2.9% 
(SD) under the canopy and 60.4% ± 1.6% (SD) in the 
canopy gap, respectively. 

As stated in the section entitled materials ands meth- 
ods, we shortened the interval of warmth index order to 
adapt the index to the cold region of our survey. This 
warmth index and the mass-loss rates of each sample are 
plotted in Figure 2.  

Mass losses from all the samples occurred (p < 0.05) 
during the 1st year (warmth index of 1530˚C) at the rate  

 

Figure 2. Variations of mass loss (n = 4 in each plot) in 
sample types as a function of warmth index with monitoring 
site (a) canopy gap and (b) under canopy as parameter. 
Warmth index in this figure means the sum of daily mean 
temperature above 5˚C: 1530˚C from October the 1st year 
to September the 2nd year, 2710˚C from October the 1st 
year to September the 3rd year, and 4161˚C from October 
the 1st year to September the 4th year. 
 
of about 20% except for woody litterfalls and the canopy- 
gap litter (Figure 2). The early-stage (over the 1st year) 
decomposition rates range from ~10% near the Arctic 
Circle to ~40% in northern Germany [24]. It is consi- 
dered that the measured mass losses except those for the 
above-mentioned two samples are approximately inter- 
mediate between the Arctic value and the northern Ger- 
many value. 

The climate effect on decomposition of soil carbon is 
represented by a water-stress function and the variable 
Q10 temperature function [25,26]. The canopy gap was 
~5˚C warmer and ~7% wetter than the under-canopy 
floor, so this warmer and wetter microclimate seemed to 
cause a greater rate of mass loss; however, as shown in 
Figure 2, no clear difference between mass loss in the 
canopy gap and mass loss under the canopy was ob-
served (p ≥ 0.05) (excluding the litter samples).  

4. Discussion 

Of the various samples, special attention should be paid 
to the woody litterfalls and the canopy-gap litter because 
these samples showed their own patterns of mass loss. 

4.1. Woody Litterfalls 

The mass-loss rates from woody litterfalls both in the 
canopy gap and under the canopy were quite small 
(~10% over 3 years). This low rate can be interpreted as 
follows: before any weight loss, woody debris usually 
has a long lag time which is related to the substrate size; 
following the lag phase, the debris begins to weather and 
fragment, and mass leaching and microbial activity occur 
[27]. Therefore, the decomposition of woody litterfalls 
was slow, that is, its mass loss was small. 

Copyright © 2012 SciRes.                                                                                  IJG 



R. KIKUCHI, T. T. GORBACHEVA 336 

4.2. Hypothesis for Explaining the Mass Loss of 
Canopy-Gap Litter 

As compared with the above-mentioned data in northern 
Germany (~40%) and near the Arctic Circle (~10%) (cf. 
[24]), the mass-loss rate of ~70% from the canopy-gap 
litter is significantly great; by contrast, the rate of ~20% 
from the litter under the canopy is rational. Can we 
logically interpret the obtained results to find the reason 
why only the canopy-gap litter had a very high rate of 
mass loss? It must be the most important rate-regulating 
factor under natural conditions.  

There is a clear difference between litter and litterfalls; 
litter (picked from the O horizon) has already been in 
contact with the soil, but litterfalls (picked from the 
plants) have not yet had such contact (refer to the section 
titled materials ands methods). Therefore, the following 
hypothesis is built up to interpret this specific phenol- 
menon. 

1) Fungi/bacteria ratio: in our survey field, the F 
layer under the canopy contains great amounts of fungi― 
i.e. 1.73 - 8.65 mg·g–1 fungi mycelium and 0.10 - 0.25 
mg·g–1 sporidium [28]. However, these amounts clearly 
decrease in the canopy-gap F layer―i.e. 0.52 mg·g–1 
fungi mycelium and 0.03 mg·g–1 sporidium [28]. The 
bacteria community shows a different trend: 0.01 mg·g–1 
under the canopy and 0.03 mg·g–1 in the canopy gap [28]. 
It is suggested that the changes in specie composition of 
fungi potentially influence the accumulation of recalci- 
trant soil organic matter derived from lignin and lignin- 
like substances [29].  

It is also reported that the mean percent fungal-to- 
bacterial respiratory is 84-to-16 at a 6.0 pH in North 
German spruce, and the metabolic quotient qCO2 (i.e. 
respiration per unit biomass) declines with increasing 
fungal presence [30]. Furthermore, the effect of soil war- 
ming on the fungal population is still uncertain [31,32]. 
Based on the microbial difference, it is possible to inter- 
pret the reason why the canopy-gap litter alone had a 
greater rate of mass loss as follows: mite-like small ani- 
mals break down dead plant materials on the soil into 
fine pieces in a process called fragmentation; litter frag- 
mentation (reduction of litter size and increase of surface 
area) results in the establishment of a soil bacteria popu- 
lation [33]―bacteria growth is especially affected by 
fragmentation size because fungi can penetrate sub- 
stances more easily than bacteria. However, a high rate 
of litter fragmentation by mite-like small animals is not 
expected under a harsh and cold climate in high-latitude 
regions. 

2) Wind-related mix and fragmentation: air tempe- 
ratures within the forest in the afternoon are cooler than 
the temperatures in nearby cleared areas [34]. Openings 
(canopy gaps) in a moderate to dense tree stand become 
warm air pockets during the day, and these openings  

often act as natural chimneys, leading to accelerate the 
rate of local updraft [34]. This updraft gives vibration, 
rotation, inversion and so on to the litter present on the 
canopy-gap floor, contributing to litter fragmentation 
(Figure 3).  

During the updraft-related process, litter is mixed with 
soil bacteria as well as fungi. The main benefit of frag- 
mentation is the fast leaching of toxic phenolics asso- 
ciated with fragmented litter [35]. The different contents 
of phenolics support this leaching theory: the content (6.0 
mM·kg–1) of phenolics in the canopy-gap litter is much 
lower than that (14 mM·kg–1) in the litter under the 
canopy [36]. Consequently, litter becomes more bioavai- 
lable not only to fungi but also to bacteria in the canopy 
gap. 

5. Conclusions 

Of the various samples, the canopy-gap litter alone had a 
greater rate of mass loss in the monitored boreal forest. 
Although temperature, soil moisture and soil properties 
are currently prioritized in the issue of soil CO2 release, 
the obtained results suggest that it is necessary to make a 
clear distinction of monitoring sites (under the canopy 
and in the canopy gap) as well as make a clear distinction 
between litter and litterfall when discussing the effect of 
climate on soil CO2 release from high-latitude forests.  

Furthermore, it is also suggested that the type of mi- 
crobial community and the wind effect are essential fac- 
tors to be considered: 1) fungal mycelia are abundant in 
the boreal tree area (under the canopy in particular); 2) 
the bacteria community is abundant in the canopy gap 
(i.e. open space); and 3) there is a possibility that the rate 
of local updraft may make litter materials more bio- 
available to the bacteria community (i.e. an increase in 
the soil-CO2 release). However, this interpretation is only 
tentative, and more detail research is called for. 
 

 

Figure 3. Conceptual schematics of wind effect on litter de- 
composition in a canopy gap for explaining the high mass- 
loss rate from the canopy-gap litter. Openings (canopy gaps) 
often act as natural chimneys and accelerate the rate of 
local updraft (a current of rising air). The swaying motion 
of litter in the wind facilitates the mixing of litter with soil 
bacteria and fungi, the leaching of phenolics from litter 
pieces, and litter fragmentation. Consequently, microbial 
accessibility to litter rises. 
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