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ABSTRACT 

Seamless and reliable navigation for civilian/military application is possible by fusing prominent Global Positioning 
System (GPS) with Inertial Navigation System (INS). This integrated GPS/INS unit exhibits a continuous navigation 
solution with increased accuracy and reduced uncertainty or ambiguity. In this paper, we propose a novel approach of 
dynamically creating a Voronoi based Particle Filter (VPF) for integrating INS and GPS data. This filter is based on 
redistribution of the proposal distribution such that the redistributed particles lie in high likelihood region; thereby in- 
creasing the filter accuracy. The usual limitations like degeneracy, sample impoverishment that are seen in conventional 
particle filter are overcome using our VPF with minimum feasible particles. The small particle size in our methodology 
reduces the computational load of the filter and makes real-time implementation feasible. Our field test results clearly 
indicate that the proposed VPF algorithm effectively compensated and reduced positional inaccuracies when GPS data 
is available. We also present the preliminary results for cases with short GPS outages that occur for low-cost inertial 
sensors.  
 
Keywords: Sensor Fusion; Global Positioning System; Inertial Navigation System; Voronoi Tessellations; Particle  
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1. Introduction 

Development of a reliable, risk-free course in a complex 
and dynamic environment for military or civilian appli- 
cations requires a sense of positioning, tracking and 
navigation (constituting of position, velocity and attitude 
parameters). Global Positioning System (GPS) has been 
the prominent technology to fulfill the demands for reli- 
able navigation, over extended periods of time, covering 
any part of the world during day or night [1]. However, 
standalone GPS signals may be completely lost for short 
durations when, for example, a vehicle goes through a 
tunnel or passes under a bridge or dense foliage [2] or 
can be deliberately jammed. Under these circumstances, 
alternate information sources need to be employed like 
Inertial Navigation System (INS), to bridge the non-GPS 
signal reception periods [3]. INS overcomes the short- 
comings of GPS by providing continuous navigation data 
based on the self-contained measurements derived from 
inertial sensors (accelerometers and gyroscopes) [4]. INS 
can bridge GPS signal gaps, assist in signal reacquisition 
after an outage and reduce the search domain for detect- 
ing and correcting GPS cycle slips [3,4]. However, its 
solution accuracy decreases with time because of inher- 

ent sensor errors (biases, scale-factor errors, noises and 
drifts) that may render the uncorrected measurements 
useless, especially for low-cost sensors [5]. The INS er- 
ror growth can be limited by utilizing external aiding 
sources like GPS derived position and velocity data, with 
bounded errors [2-5]. Therefore, to provide continuous, 
accurate and affordable navigation solution under all 
environmental scenarios, information coming from these 
multiple sensors (like GPS and INS) need to be fused or 
integrated together by accurate, robust and reliable algo-
rithms/integration platforms [6]. Motivated by this sce-
nario, this paper strives to develop a novel and reliable 
multi-sensor fusion algorithm based on integrating Parti-
cle filter with Voronoi tessellations called Voronoi based 
Particle Filter (VPF).  

Generally, Kalman Filter (KF) and its modifications 
are the most widely used methods for integrating INS 
and GPS system because of their simplicity and ability to 
estimate past, current and even future states [7]. KF is an 
optimal filter for linear systems with Gaussian noise but 
is not applicable to non-linear systems. For non-linear 
models, Extended Kalman Filter (EKF) can be imple- 
mented, which is based on linearization of the non-linear 
models. Kalman filters and its variant assume the Gaus- 
sian distribution to obtain a closed form solution for the *Both authors contributed equally. 
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nonlinear model and propagate only mean and covari- 
ance of the state vector through approximate models (in 
case of EKF). However, the linearization process in EKF 
is often complicated, time consuming and may cause 
filter divergence [3,8]. To overcome these current limita- 
tions, other types of Bayesian filters like Unscented 
Kalman Filter (UKF) were developed [8]. UKF is based 
on the principle that it is easier to approximate a Gaus- 
sian distribution by fixed number of sigma points, than to 
approximate an arbitrary nonlinear function. However, 
when the nonlinearity is highly pronounced, even the 
best fitting Gaussian distribution becomes a poor ap- 
proximation to the posterior distribution [9,10] as illus- 
trated in Figure 1. As observed, neither an exact nor a 
finite-dimensional solution can be obtained for nonlinear 
filtering problem [10]. Hence, various numerical ap-
proximation methods (like sequential Monte Carlo or 
particle filters) are developed to address the intractability 
which will be discussed in Section 2.  

This paper has been divided into 5 sections. Section 2 
describes the various particles filters while Section 3 de- 
scribes our proposed Voronoi based particle filter. Sec- 
tion 4 illustrates the results obtained with and without 
GPS outages and conclusions are drawn in Section 5. 

2. Types of Particle Filters 

Particle Filter (PF) was implemented in order to over- 
come the current limitations of EKF and UKF by various 
researchers [4,7,9-16]. The PF can deal with nonlineari- 
ties and does not require any assumption about the form 
of the posterior distributions. In PF the posterior dis- 
tribution is represented by a cluster of random particles 
rather than a linearized function (EKF) or deterministi- 
cally chosen few points around the mean value (UKF) 
[10]. According to the law of large numbers, larger the  

number of particles, closer is the distribution to the true 
posterior function. In PF, to avoid intractable integrals, 
the desired posterior density  1:m mp x z  is represented  

by N independent, random samples   s
mx  with equal 

weights   1 , 1, 2, ,s
mw N s N    drawn from the dis- 

tribution according to the Monte Carlo principle as given 
by Equation (1). 

   1:
1

1 ,
N

s
m m m m

s

p x z N x x


          (1) 

where   represents the Dirac delta function. Since, it is 
not always feasible to sample from the true posterior dis- 
tribution, it is common to sample from an easy to imple- 
ment distribution called the proposal distribution  
 1:zm m , as per the Importance Sampling (IS) algo- 

rithm [4,7,10-16]. The importance weights are then given 
by Equation (2). 

q x

     1: 1: .m m m mw x p x z q x z m         (2) 

Based on the choice of this proposal density, different 
types of particle filters have emerged. In the simplistic 
Sequential Importance Sampling (SIS) Particle filter, the 
prior density     1

s s
m mp x x   function is selected as the 

importance or proposal density, so as to simplify the par- 
ticle selection and weight calculations [10-12]. Conse- 
quently after a few iterations dispersion occurs, i.e., most 
of the samples exhibit negligible weights as information 
coming from the latest measurement is completely ig- 
nored while drawing out particles from the prior density 
[13-16]. The most common ways to avoid this problem is 
to use larger number of particles or to use Resampling 
method [10,11], leading to Sequential Importance Re- 
sampling (SIR) Particle filter. SIR filter constitutes of 
SIS + Resampling method at every time instant, which  
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Figure 1. Sensor fusion algorithms (including proposed VPF).  
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eliminates particles with lower weights and multiplies 
particles with higher weights. Introducing resampling at 
every time step leads to sample impoverishment as simi- 
lar particles will be repeated number of times [12]. An 
ad-hoc approach called jittering was suggested to allevi- 
ate the sample impoverishment issue [17]. This approach 
added a small amount of Gaussian noise to each resam- 
pled particles so as to increase their diversity. However, 
this comes at the cost of immediately introducing some 
additional variance [12]. The performance of the SIS or 
SIR PF is limited because of the choice of the proposal 
distribution, especially when the likelihood is too narrow 
in comparison to the transition prior density function [4, 
7,10]. 

To overcome these issues, a better proposal distribu- 
tion is desired, which is conditioned on the latest meas- 
urement [11-14]. Kalman based filters incorporate the 
latest measurement into the updated posterior state. 
Therefore, if EKF or UKF is used to generate the impor- 
tance distribution, latest measurement can be incorpo- 
rated into the distribution through the local linearization 
around each particle [15,16]. This is the principle behind 
the Extended particle filter (EPF) [15,18] and the Un- 
scented particle filter (UPF). The UPF is based on the 
UKF, an attractive alternative to EKF for highly non- 
linear problems. However, the computational cost per 
particle is higher as each particle is individually propa- 
gated through EKF or UKF to form the proposal distri- 
bution. To overcome these limitations, a hybrid extended 
particle filter (HEPF) was proposed [19]. HEPF com- 
bines the advantages of EKF (less computational load) 
and EPF (more accuracy during highly nonlinear regions) 
by alternating between the two filters, based on system 
dynamic. Another option to alternating between two dif- 
ferent filters is to marginalize out the linear states of the 
model from the nonlinear states as introduced in the Rao- 
Blackwellized particle filter (RBPF) [20,21]. In RBPF 
the linear states are estimated by the KF while the non- 
linear states by the PF portion of the algorithm. These 
strategies reduce the filter divergence issue and require 
less number of particles for outputting adequate naviga- 
tion solution. However, since the EPF or classic PF are 
still used by the HEPF or RBPF for the non-linear state 
estimation, their respective problems remain associated 
with the filter design [22]. 

Another approach to alleviate sample impoverishment 
problem in SIS/SIR filter is addressed by Pitt and 
Shepard in the form of the Auxiliary particle filter (APF) 
[23]. APF enhances the effectiveness of the importance 
sampling step by augmenting the existing good particles  

  
1

N
s

m
s

x


 such that their predictive likelihood  

   1
1

density is a mixture of past states and the most recent 
observations. As long as the process noise is small, the 
performance of APF is superior to SIR PF. However, the 
moment the process noise increases, its accuracy decreases  

because of poor approximation of the     s
mp x . 

Further, APF is computationally slower since the pro- 

1
s

mx   [21]  

posal is used twice in the implementation. In likelihood 
PF (LPF), the likelihood function  p z x  is selected 
to be the proposal density based o mption that 
particles drawn from the likelihood function will be 
closer to the true posterior density in comparison to par- 
ticles drawn from the state transition density [10,11]. 
This is effective only when the likelihood function is 
highly peaked and transition density is broad [21]. To 
combine the advantages of LPF and SIR filters, mixture 
particle filters (MPF) were developed. These MPF can be 
based on mixture posterior; where posterior is a weighted 
Gaussian mixture of parallel EKF or mixture proposal 
distributions [24], where distribution is based on mixture 
transition and likelihood functions. However, there are 
number of practical implementation limitations of these 
filters, for eg. the selection of Gaussian distribution pa- 
rameters or decision about the number of samples to be 
used from the transition and likelihood function etc.  

From all these methodologies discussed in literatu

m m

n the assu

re, 
co

3. Methodology of Voronoi Particle Filter 

uple of prominent limitations like dispersion and sam- 
ple impoverishment, are being addressed by our method- 
ology. For a given finite set of generators, a Voronoi 
tessellation for each of these generators consists of all 
particles whose distance to a generator is not greater than 
to any other generator [25]. Motivated by this advantage 
of Voronoi tessellations, in this paper we have developed 
VPF method. In our methodology, Voronoi are created 
dynamically as and when new generators become avail- 
able.  

At previous epoch, N particles are generated from the 
prior distribution  1 1: 2m mp x z   and assigned equal 
weights. Now each cles is passed through 
the developed system model as given by Equation (3).  

of these parti

              (31 1 1,m m m mx x w     ) 

where at time mt ,  0,1,2,mx m    is the state vector 
of dimension 1r , mw  is the independent dynamic 
noise 1r  vec he nonlinear function tor, and t  1 .m  , 
of dim on r rensi  , describes the state transitio  
discrete time 

n from
1m   to time m to get predicted state vec-  

tor   ˆ
1

N
s

m
s

x


. T articles are now ready to be used for  he p

reationN
s

m m
s

p z x 


 is high. Hence, the selected proposal  
the c  of a dynamic Voronoi. This procedure fol- 
lows different path for different scenarios which are ex- 
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plained below. 

3.1. Situation I: GPS Data Is Available  

 

These icles in storage , are subdivided into 

3.1.1. Voronoi Gets Filled with the Maximum
Capacity 
 set of part 

Ωtessellations   1

k

iV  if 
1 i

k

i
V


  and i jV V

i
  , 

i j , where ellation  
lation îV  is constructed using a data point called 

generator iz he Voronoi tessellation îV  for each iz  
is the set o all points closer to iz  than

k is the num

. T

ber of tess s. Each such
tessel

f  jz  for i j , 
as defined by Equation (4). 

ˆ ΩV x x z x     for 1, 2, , ,i i jz i k i j   (4) 

Let denote a distance function induced by a 
no

 

 ,d x z  
rm that is equivalent to the 2l  norm on N . Then 

Voronoi tessellation of Ω , with respect to this tric, is 
defined by Equation (5).

 

 me

 ˆ Ω , ,V x d x z d   for 1,2, , ,i i jx z i k i j   (5) 

Dynamic creation of a Voronoi is withheld until 
G

the 
PS data is available, as GPS is the Voronoi generator 

iz  (illustrated by Figure 2). Till the arrival of GPS, the 
oming INS particles are stored in Ω . Bythe time GPS 

data becomes available, storage Ω ight have none, 
some or huge set of INS particles. The decision to cluster 
an INS particle into the Voronoi is based on Equation (5). 
If the criterion is met, the INS particle joins with that 
Voronoi otherwise the INS particles are stored in Ω

inc
 m

  
for the next Voronoi. This procedure is continued till the 
Voronoi gets the set number (N) of INS particles. With 
this, Voronoi is closed and the algorithm looks for the 
dynamic creation of next Voronoi. Thus theVoronoi tes- 
sellations   1

k

iV  are formed such that particles with 
similar we at satisfy Equation (5) are grouped to- 
gether in a tessellation îV . 

i
ights th

3.1.2. Voronoi Gets Partially Filled 
ot satisfy Equation If sufficient number of particles did n

(5) then Voronoi gets partially filled. In this case, the 
data in storage Ω  is redistributed depending on the dis- 
tance function uation (8)) and thus results in a dy- 
namic Voronoi. Given a tessellation 

(Eq
NV    and a den- 

sity function  , defined in V, the m roid zass cent   of 
V is defined by quation (6). 

 

 E

 d d
v v

z y y y y  y           (6) 

In our case, the arithmetic mean (Equation (7)) corre- 
sp

 

onds to the mass centroid of V, where n is the number 
of particles in the tessellation V  

1

z

z

z

z

z

z
z z

z

z

z

z

GPSz

GPSz z 

 

Figure 2. Voronoi with center as z* = zGPS. 
 

Given r rs, 
here 

 a set of k particles which are gene ato
1,2, ,

,iz  
w i k 

 ˆ ,iV  we ca

; we can define their associated Vo- 
es-ronoi tessellations îV . On the other hand, given the t  

sellation n define their mass centroids iz  as 
illustrated by Figu . Here, we are interested in the 
situation where i iz z

re 2
 , i.e., the particles zi, that se  as 

generators for the Voronoi tessellations îV  are them- 
selves the mass ds of those tessellations. We call 
such a tessellation Centroidal Voronoi tessellation [25]. 
Partially filled Voronoi has the generator zi and one can 
compute the mass centroid iz  for the data in storage 
Ω

rve

centroi

 . Now the process of simultaneously redistributing the 
particles in the storage Ω'  and checking distance func- 
t  (Equation (8)) between the new mass centroid and zi 
is iterated till convergence i iz z   is achieved. These 
iterations guarantee that the Voronoi gets filled to the 
maximum capacity with iz 

ion

iz . 

   , ,i new id z z d z z                (8) 

Once the dynamic Voronoi is f

GPS measurement as the center z , weights 

illed with the given  
 

i
1

 N
s

m
s

w


 of  

the pa (9) wherticles are updated according to Equation re 
h is the measurement model. 

s

s
X V

Z n X

               (7)          1s

ˆ ˆNs s s
m m m m mw p z h x p z h x       (9) 
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The posterior density function (required den
be represented by a collection of these predicted pa
al

where b
yv  and b

zv  denote the body frame velocities in 
Y and Z directions respectively. The created Voronoi has 
all the particles with equal weights, which are later 
updated according to the new GPS center. The posterior 
density function (required density) will be represented by 
a collection of these predicted particles along with their 
updated weights.  

sity) will 
rticles 

ong with their updated weight as given in Equation (10). 
The complete Voronoi based particle filter algorithm is 
illustrated in Figure 3. 

      ˆ ˆ
N

1

s s
m mp x z w x x          (10) m m m

s

3.2. Situation II: GPS Data Is Unavail

data 
 that is 

e

4. Results 
able 

The field test data was collected by installing various 
equipments in a test vehicle [24]. These include a Cross- 
bow IMU 300CC-100, reference high grade Honeywell 
IMU-HG1700, Novatel OEM GPS receivers and com- 
puter. The test trajectory covered a number of vehicle 
dynamics. Throughout the test, a minimum of seven sat- 
ellites were visible, except for several short natural GPS 
signal outages. For testing purposes, we carried out many 
experiments (without GPS outage) and here we report a 
couple of cases with N = 15 (Figure 5) and N = 45 parti- 
cles (Figure 6). We established the performance of the 
VPF algorithm by plotting the least square error (Figure 
7) of the calculated trajectories (for N = 15 to 55) with 
respect to their reference solution. We also introduced 
several short GPS outages at various locations that are 
intentionally picked under diverse conditions. The posi- 
tion predicted by the VPF approach during one such  

In case of non-availability of GPS, the previous GPS 
point acts as the starting point for zi. The INS data
already collected is divided into arbitrary number of balls 
and their mass centroids iz  are computed. They then 
follow a sequence of iterations to simultaneously correct 
the centers iz  and redistri ting the arbitrary balls with 
reference to .iz  The resulting balls are ordered in an 
increasing e r threshold (i.e., 1z

  is more closer to iz  
than 2z ) and e Voronoi starts getting filled with the 
first ball and incase it is not filled to its maximum capac- 
ity, second ball in row is used. This ensures creation of 
an appropriate Voronoi with propagated GPS ( iz ) as the 
center. Further, incorporation of the non-holonomic 
conditions, given by Equation (11) guarantees th  vehicle 
progresses in the correct path.  

0, 0,b b
y zv v               (11) 

bu

rro
th

 

 

Figure 3. Voronoi based particle filter. 
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Figure 4. VPF with 15 particles. 
 

 

Figure 5. VPF with 45 particles. 
 

 

Figure 6. Least square errors vs particles. 
 
outage is compared with the reference differential GPS 
for N = 15 and N = 45 particles (Figure 7). 

4.1. Without GPS Outage 

In this section we demonstrate the successful completion 
of the 52 minute trajectory with as small as 15 particles 

by our proposed Voronoi based particle filter. The tra- 
jectory data is shown using the GPS Visualizer toolbox. 
We observe that as the number of particles increases, the 
trajectory becomes smoother and smoother. Figures 4 
and 5 illustrate the complete trajectories with N = 15 and 
N = 45 particles. We observe that trajectory with 45 par- 
ticles has lesser error and is smoother than the trajectory 
with 15 particles. We have highlighted a section of the

 this observation. Figure 6 illus- 
ormance of the VPF with different number 

of particles ranging from 15 to 55. The least square error 
is calculated by comparing each trajectory with the ref- 
erence solution. We observe that as the number of parti- 
cles increases, the error decreases. 

4.2. With GPS Outage 

We carried out some initial experiments with GPS out- 
ages at various intentionally chosen locations. We could 
successfully bridge the GPS gap with as small as 15 par- 
ticles. This shows that our algorithm works in the GPS 
outage scenario as well. We report here the preliminarily  

 
trajectory to illustrate
trates the perf
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(a)                          (b) 

Figure 7. Performance of VPF with (a) 15 and (b) 45 parti- 
cles during GPS outage. 
 
results for 15 and 45 particles as given in Figure 7, 
where GPS gap is highlighted. We can clearly see that 
the error with 45 particles (circled region in Figure 7(b)) 
is less than the error with 15 particles (circled region in 
Figure 7(a)). More work will be put in this scenario with 
longer GPS outages under diverse conditions in our fu- 
ture publications.  

5. Conclusion 

e have

cation of the 
e concept of dynamic Vo- 

fall into the high like- 

 the VPF algorithm. 
Future work will include larger GPS outages at various 

and this will be reported in 
later publication.  
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