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Abstract 
A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to 
any degree, dark network analysis can be accomplished using the SNA software. The output of SNA 
software includes many measures and metrics. For each of these measures and metric, the output 
in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these 
measures. We might use this information in decision making concerning best methods to disrupt 
or deceive a given dark network. In the Noordin Dark network, different nodes were identified as 
key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify 
the key players or nodes in a Dark Network in a similar manner as we previously proposed in so- 
cial networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and 
an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a 
function of the decision makers’ inputs. We compare these methods by illustration using the 
Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to 
the criteria weights in order to measure the change in the ranking of the nodes. 
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1. Introduction to Dark Networks 
Social Network Analysis (SNA) is the methodical analysis of social networks in general and dark networks [1]. 
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Social network analysis is a collection of theories and methods that assumes that the behavior of actors (indi- 
viduals, groups, organizations, etc.) is profoundly affected by their ties to others and the networks in which they 
are embedded. Rather than viewing actors as automatons unaffected by those around them, SNA assumes that 
interaction patterns affect what actors say, do, and believe. Networks contain nodes (representing individual ac-
tors or entities within the network) and edges and arcs (representing relationships between the individuals, such 
as friendship, kinship, organizational position, sexual relationships, communications, tweets, Facebook friend- 
ships, terrorists, etc.). These networks are often depicted in two formats: graphically or matrix. We might call the 
graph a social network diagram or dark network diagram, where nodes are represented as points or circles and 
arcs are represented as lines that interconnect the nodes. 

A Dark Network is any network organization that cannot be assessed by typical means. These might include 
drug cartels, alien smuggling rings, money laundering operations, terrorism, illegal trafficking, and nuclear pro- 
liferation. According to Milward [2] [3], the ideal type dark network is both covert and illegal. In reality, many 
networks are deemed “gray” networks. We assume that the things that make a network effective for legal activi- 
ties also makes them effective for illegal activities. Therefore, we propose to apply the same mathematical mod- 
eling proposal at Dark Networks as we did to Social Networks in previous studies. 

In their article, Millward [2] [3] also proposed the question, “Can understanding legal network help in under- 
standing dark networks?” Their research shows it can help as they applied this to the 9 - 11 terrorist network and 
other dark networks. 

We will provide a brief background of social network analysis. More precisely, we introduce some of the more 
common metrics and measures as well as their definitions that are used for exploratory analysis of networks. In 
this paper, we assume decision makers are only looking for the powerful and influential players in a network. In 
the SNA literature, there has been some discussion as to four main measures that might be used to analysis the 
most influential person in a network [4] and these include only the following centrality measures: degree cen- 
trality, betweenness, closeness, and eigenvector. In our research, we use all eight output metrics and then only the 
four key metric to see the impact of using only four versus the eight metrics. 

There are a multitude of measures (metrics) that are found in most SNA software. The software package that 
we used in this analysis is ORA [5]: 

We begin by defining the main four centrality metrics. Other metric definitions may be seen in social network 
literature [6]-[8]. 

Betweenness: Betweenness is a measure of the extent to which a node lies on the shortest path between other 
nodes in the network. This measure takes into account the connectivity of the node’s neighbors, giving a higher 
value for nodes which bridge clusters. The measure reflects the number of people who a person is connecting 
indirectly through their direct links. 

Closeness: Closeness is the degree an individual is near all other individuals in a network (directly or indi- 
rectly). It reflects the ability to access information through the “grapevine” of network members. Thus, closeness 
is the inverse of the sum of the shortest distances between each individual and every other person in the network. 
The shortest path may also be known as the “geodesic distance”. 

Eigenvector Centrality: Eigenvector centrality is a variation on degree centrality in that assumes that ties to 
central actors are more important than ties to peripheral actors and thus weights an actor’s summed connections 
to others by their centrality scores. Google’s Page Rank score is a variation on eigenvector centrality. 

Degree Centrality: Degree centrality is defined as the number of links incident upon a node (i.e., the number 
of ties that a node has). The degree can be interpreted in terms of the immediate risk of a node for catching 
whatever is flowing through the network (such as a virus, or some information). In the case of a directed net- 
work (where ties have direction), we usually define two separate measures of degree centrality, namely indegree 
and outdegree. 

For our analysis, we use the subset of the Noordin Top Terrorist Network drawn primarily from “Terrorism in 
Indonesia: Noordin’s Networks”, a 2006 publication of the International Crisis Group. It includes relational data 
on the 79 individuals listed that publication. The data were initially coded by Naval Postgraduate School students 
and the Common Research Environmental (CORE) Lab in our department. 

Previous works on using AHP and TOPSIS [7] [8] have shown the proof of principle approach using two basic 
social networks from the literature and applied methods for obtaining the eigenvectors using dynamical systems [9] 
[10] and power methods [11]. 
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2. Methodologies to Find Key Players across Many Metrics: Application of  
Technique of Order Preference by Similarity to the Ideal Solution (TOPSIS)  
in a Dark Network 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-attribute decision 
analysis method [12]-[14] that continues to be widely used to rank order alternatives. TOPSIS is based on the 
concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution 
and the longest geometric distance from the negative ideal solution. It is a method of compensatory aggregation 
that compares a set of alternatives by identifying weights for each criterion, normalizing the scores for each cri- 
terion based upon the TOPSIS normalization design and calculating the geometric distance between each alter- 
native and the ideal alternative, which is the best score in each criterion. An assumption of TOPSIS is that the 
criteria are monotonically increasing or decreasing.  

Compensatory methods such as TOPSIS allow trade-offs between criteria, where a poor result in one criterion 
can be negated by a good result in another criterion. This provides a more realistic form of modeling than non- 
compensatory methods, which include or exclude alternative solutions based on hard cut-offs.  

2.1. TOPSIS Background 
We only desire to briefly discuss the elements in the framework of TOPSIS. TOPSIS can be described as a me- 
thod to decompose a problem into sub-problems. In most decisions, the decision maker has a choice among sev- 
eral to many alternatives. Each alternative has a set of attributes or characteristics that can be measured, either 
subjectively or objectively. The attribute elements of the hierarchal process can relate to any aspect of the deci- 
sion problem—tangible or intangible, carefully measured or roughly estimated, well- or poorly-understood—any- 
thing at all that applies to the decision at hand. 

The TOPSIS process is carried out in the following seven steps described as follows: 
Step 1 Create an evaluation matrix consisting of m alternatives and n criteria, with the intersection of each al- 

ternative and criteria given as xij, giving us a matrix ( )ij mxn
X . 
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1 31 32 33 3
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Step 2 The matrix shown as D above then normalized to form the matrix ( )ij mxn
R R= , using the normaliza- 

tion method 

2

ij
ij

ij

x
r

x
=

∑
 

for i = 1, 2···, m; j = 1, 2,··· n. 
Step 3 Calculate the weighted normalized decision matrix. First, we need the weights. Weights can come 

from either the decision maker or by computation using a scheme such as AHP with the pairwise comparisons 
[15]. The sum of the weights over all attributes must equal 1 regardless of the method used. Multiply the weights 
to each of the column entries in the matrix from Step 2 to obtain the matrix, T. 

( ) ( ) , 1, 2, ,ij j ijmxn mxn
T t w r i m= = =   

Step 4 Determine the worst alternative (Aw) and the best alternative (Ab): Examine each attribute’s column and 
select the largest and smallest values appropriately. If the values imply larger is better (profit) then the best al- 
ternatives are the largest values and if the values imply smaller is better (such as cost) then the best alternative is 
the smallest value. 

( ( ){ } { }max 1, 2, , , min 1,2, , 1, 2, , ,w ij ij wjA t i m j J t i m j J t j n− += = ∈ = ∈ ≡ =    

http://en.wikipedia.org/wiki/Multi-criteria_decision_analysis
http://en.wikipedia.org/wiki/Multi-criteria_decision_analysis
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( ( ){ } { }min 1,2, , , max 1,2, , 1, 2, , ,wb ij ij bjA t i m j J t i m j J t j n− += = ∈ = ∈ ≡ =    

where { )1,2, |J j n j+ = =   associated with the criteria having a positive impact, and { )1, 2, |J j n j− = =   as- 
sociated with the criteria having a negative impact. 

We suggest that if possible make all entry values in terms of positive impacts. 
Step 5 Calculate the L2-distance between the target alternative i and the worst condition Aw 

( )2

1
, 1, 2, ,

n

iw ij wj
j

d t t i m
=

= − =∑  ,  

and the distance between the alternative i and the best condition Ab 

( )2

1
, 1, 2, ,

n

ib ij bj
j

d t t i m
=

= − =∑  , 

where diw and dib are L2-norm distances from the target alternative i to the worst and best conditions, respective- 
ly. 

Step 6 Calculate the similarity to the worst condition: 

( )
,0 1, 1,2, ,iw

iw iw
iw ib

d
S s i m

d d
= ≤ ≤ =

+
 . 

Siw = 1 if and only if the alternative solution has the worst condition; and Siw = 0 if and only if the alternative 
solution has the best condition. 

Step 7 Rank the alternatives according to their value from ( )1,2, ,iwS i m=  . 

2.2. TOPSIS Uses and Applications 
While TOPSIS can be used by individuals working on straightforward decisions, TOPSIS is most useful where 
teams of people are working on complex problems, especially those with high stakes, involving human percep- 
tions and judgments, whose resolutions have long-term repercussions. It has unique advantages when important 
elements of the decision are difficult to quantify or compare, or where communication among team members is 
impeded by their different specializations, terminologies, or perspectives. 

Decision situations to which the TOPSIS might be applied include:  
• Choice―The selection of one alternative from a given set of alternatives, usually where there are multiple 

decision criteria involved. 
• Ranking―Putting a set of alternatives in order from most to least desirable. 
• Prioritization―Determining the relative merit of members of a set of alternatives, as opposed to selecting a 

single one or merely ranking them. 
• Resource allocation―Apportioning resources among a set of alternatives. 
• Benchmarking―Comparing the processes in one's own organization with those of other best-of-breed or- 

ganizations. 
• Quality management―Dealing with the multidimensional aspects of quality and quality improvement. 
• Conflict resolution―Settling disputes between parties with apparently incompatible goals or positions. 

3. Applications to Noordin Dark Network 
We will illustrate using the Noordin Dark Network with graphical network depicted in Figure 1. 

We obtained all the outputs from ORA and a summary of Key Node analysis as shown in Table 1. Table 1 
shows different key nodes across the metrics. The four main centralities are italicized. 

We extracted the actual metric values from the output of ORA for the 20 nodes across these key metrics. Ta- 
ble 2 provides these metrics values from ORA for the top 20 nodes (size: 79 nodes, density: 0.0879585) for eight 
outputs initially identified by ORA. First, we performed analysis using all eight metric as decision criteria. Next, 
we performed the analysis with only the main four centrality measures as decision criteria. 

We use the decision weights from our AHP template program (unless a real decision maker gives us their own 
weights) and find the eigenvectors for our eight metrics as shown in Table 3 displaying the pairwise comparison, 

http://en.wikipedia.org/wiki/Ranking
http://en.wikipedia.org/wiki/Resource_allocation
http://en.wikipedia.org/wiki/Benchmarking
http://en.wikipedia.org/wiki/Quality_management
http://en.wikipedia.org/wiki/Conflict_resolution
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Figure 1. ORA’s trust network from noordin’s seventy-nine 
node dark network.                                       

 
Table 1. ORA’s key nodes from the Noordin Dark Network.                                                        

Rank Betweenness  
Centrality 

Closeness  
Centrality 

Eigenvector  
Centrality 

Eigenvector Centrality  
per Component 

In-Degree  
Centrality 

In-Closeness  
Centrality 

Out-Degree  
Centrality 

Total Degree  
Centrality 

1 N2 N2 A5 A5 A5 N2 A5 A5 

2 I7 A5 M4 M4 N2 A5 N2 N2 

3 A13 U T T M4 U M4 M4 

4 A4 A13 N2 N2 A6 A13 A6 A6 

5 A5 F A6 A6 T F T T 

6 U6 M4 J J F M4 F F 

7 A12 A6 F F J A6 J J 

8 Z A23 U U U A23 U U 

9 D2 T S8 S8 S8 T S8 S8 

10 M5 I7 A22 A22 A23 I7 A23 A23 

11 S6 J M3 M3 B J B B 

12 U S8 B B A13 S8 A13 A13 

13 J B S5 S5 A22 B A22 A22 

14 A6 D2 A23 A23 D2 D2 D2 D2 

15 A23 A17 A2 A2 I7 A17 I7 I7 

16 A16 A7 I6 I6 M3 A7 M3 M3 

17 B I2 D2 D2 S5 I2 S5 S5 

18 P I6 A17 A17 A17 I6 A17 A17 

19 F A22 I2 I2 S6 A22 S6 S6 

20 A17 S5 A7 A7 A7 S5 A7 A7 
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Table 2. Summary of ORA’s output for Noordin Dark Network for the 8 criterion.                                      

Agent/ 
Node 

Betweenness  
Cent. Closeness Eigenvector Cent. ECPC In-Degree In-Closeness  

Cent. 
Out-Closeness  

Cent. 
Total Degree  

Cent. 

a5 0.09 0.102 0.434 0.276 0.359 0.102 0.359 0.359 

n2 0.182 0.103 0.35 0.222 0.333 0.103 0.333 0.333 

m4 0 0.1 0.392 0.249 0.269 0.1 0.269 0.269 

a6 0.033 0.1 0.325 0.206 0.256 0.1 0.256 0.256 

t 0 0.099 0.376 0.239 0.256 0.099 0.256 0.256 

f 0.025 0.1 0.313 0.199 0.231 0.1 0.231 0.231 

j 0.034 0.099 0.32 0.203 0.231 0.099 0.231 0.231 

u 0.038 0.101 0.305 0.194 0.231 0.101 0.231 0.231 

s8 0 0.099 0.299 0.19 0.205 0.099 0.205 0.205 

a23 0.032 0.1 0.257 0.163 0.192 0.1 0.192 0.192 

b 0.028 0.099 0.279 0.177 0.192 0.099 0.192 0.192 

a13 0.14 0.101 0 0 0.179 0.101 0.179 0.179 

a22 0 0.098 0.289 0.184 0.179 0.099 0.179 0.179 

d2 0.04 0.099 0.226 0.144 0.179 0.099 0.179 0.179 

I7 0.163 0.099 0 0 0.179 0.099 0.179 0.179 

m3 0 0 0.281 0.179 0.179 0 0.179 0.179 

s5 0 0.098 0.264 0.168 0.179 0.099 0.179 0.179 

a17 0.025 0.098 0.224 0.143 0.167 0.098 0.167 0.167 

s6 0.039 0 0 0 0.167 0 0.167 0.167 

a7 0 0 0.209 0.153 0.154 0.098 0.154 0.154 

 
Table 3. Decision pairwise matrix and decision weights.                                                          

 BETW CC EC ECPC IDC ICC ODC TCC    Priority Weights 

BETW 1 2 2 2 2 3 4 5    BETW 0.237698214 

CC 0.5 1 2 2 2 4 5 6  CR 0.04538 CC 0.214033206 

EC 0.5 0.5 1 2 2 3 4 5    EC 0.166105921 

ECPC 0.5 0.5 0.5 1 2 2 3 4    ECPC 0.125044271 

IDC 0.5 0.5 0.5 0.5 1 2 3 4    IDC 0.105366024 

ICC 0.3333333 0.25 0.3333333 0.5 0.5 1 3 4    ICC 0.076460933 

ODC 0.25 0.2 0.25 0.3333333 0.3333333 0.3333333 1 3    ODC 0.046489075 

TCC 0.2 0.1666667 0.2 0.25 0.25 0.25 0.3333333 1    TCC 0.028802357 

 
the consistency ratio (CR must be less than 0.1) and the resulting eigenvectors [16]. 

We take all these output metrics from ORA and perform steps 2 - 7 of TOPSIS to obtain the following raw 
and then ordered outputs shown in Table 4. 

We repeated the analysis using only the four main centrality measures. Table 5 shows the decision matrix and 
weights with a CR = 0.02846 (which is less than 0.1). 
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Table 4. Raw and ordered outputs from TOPSIS.                                                              

a5 0.419676898  n2 0.965425053 

n2 0.965425053  I7 0.798190393 

m4 0.127914773  a13 0.693837087 

a6 0.062025923  a5 0.419676898 

t 0.126211599  s6 0.27177498 

f 0.028309765  a7 0.237506156 

j 0.064185335  m3 0.237393009 

u 0.086940389  m4 0.127914773 

s8 0.121464812  t 0.126211599 

a23 0.047693103  s8 0.121464812 

b 0.024764452  a22 0.121076687 

a13 0.693837087  s5 0.120921061 

a22 0.121076687  d2 0.097651096 

d2 0.097651096  u 0.086940389 

I7 0.798190393  j 0.064185335 

m3 0.237393009  a6 0.062025923 

s5 0.120921061  a23 0.047693103 

a17 0.023880284  f 0.028309765 

s6 0.27177498  b 0.024764452 

a7 0.237506156  a17 0.023880284 

 
Table 5. Decision matrix and weights with four key metrics.                                                          

Criteria TDC BETW CLOSENESS EC  CR 0.028406 

TDC 1 2 3 4    

BETW 1 2  1 2 3  Criteria Weights 

CLOSENESS 1 3  1 2  1 2  TDC 0.465819 

EC 1 4  1 3  1 2  1  BETW 0.27714 

      CLOSENESS 0.16107 

      EC 0.09597 

 
Table 6 shows the raw and ordered TOPSIS output. 
We note that the top 5 nodes do not change their order and the first change occurs in position number 6. 

4. Sensitivity Analysis 
In our analysis, we have utilized weights as applicable to the metrics for the nodes. Weights are subjective, based 
upon the pairwise comparisons, even if used in AHP and TOPSIS methodologies. The literature provides no di- 
rect sensitivity analysis procedures. We recommend, as a minimum, at least a numerical trial and error approach 
to sensitivity analysis. Not only do we recommend altering the criterion pairwise comparison to measure the 
model’s robustness but also delving into break points is proven to be useful. 

In our four-metric model, we find that the model is quite robust and that with major changes in priority and 
pairwise comparison the top 5 nodes are not affected see Figure 2. We used the formula recommended [17] for 
adjusting decision maker weights as Equation (1): 
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Table 6. Raw and ordered outputs from TOPSIS.                                                               

a5 0.526791706  n2 0.975909504 

n2 0.975909504  I7 0.820395087 

m4 0.177131008  a13 0.733919843 

a6 0.25137738  a5 0.526791706 

t 0.171941456  s6 0.266131805 

f 0.217847559  a7 0.26488552 

j 0.249008462  m3 0.25137738 

u 0.266131805  m4 0.249008462 

s8 0.158907696  t 0.235575496 

a23 0.235575496  s8 0.220227253 

b 0.220227253  a22 0.217847559 

a13 0.733919843  s5 0.20586917 

a22 0.154007854  d2 0.205797021 

d2 0.26488552  u 0.177131008 

I7 0.820395087  j 0.171941456 

m3 0.0367855  a6 0.158907696 

s5 0.153653394  a23 0.154007854 

a17 0.20586917  f 0.153653394 

s6 0.205797021  b 0.0367855 

a7 0.022613065  a17 0.022613065 

 

 

Figure 2. Sensitivity analysis on the 4 criteria model top 5 with sub- 
stantial changes to criterion weighting.                             

 

1
1

p
j j

p

w
w w

w
′−

′ =
−

                                    (1)  

where jw′  is the new weight and wp is the original weight of the criterion to be adjusted and pw′  is the value 
after the criterion was adjusted. 
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In the eight-metric model, we again used the formula recommended [17] for adjusting decision maker weights. 
We plotted the top 10 alternatives using three major adjustments in criteria weighting each time insuring a dif- 
ferent criterion was the most heavily weighted. It is seen from the graph, Figure 3, that the top 5 never changed 
position. 

Finding Break Points, if They Exist 
A break point is defined as the value of weight, jw′ , that causes the ranking to be significantly change implying 
a change in the top alternative ranking. The method that we suggest is taking the largest weighted criterion and 
reduces it is slight increments which increases the weights of the other criteria and re-computing the rankings 
until another alternative is ranked number one. 

In this examination, the top ranked node, n2, never changes as shown in Figure 4. We can get changes in the 
nodes ranked 2 - 4 through an increase change in the criterion weight for closeness centrality from 0.1611 to 
0.4611, an increase of 0.3. 

5. Average Weighted Ranks 
Recall that Table 1 provided the top 20 ranks by SNA metrics, our criteria. We took the nodes and replaced the 
value under each metric with their rank in the top 20. We gave a missing value to ranks for nodes outside the top 
20. There are two schemes that can be used here where each results the lower the overall rank the more influen- 
tial the node. The first, is equal weighting of all metrics and then average the final ranks from 1 - 20 and shown 
in Table 7. The second, using the AHP weights from before, to weight the ranks by the importance of the criteria 
shown in Table 8.  
 

 

Figure 3. Sensitivity analysis.                                         
 

 

Figure 4. Looking for break points                                
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Table 7. Average ranks of nodes over the eight criteria.                                                          

Criteria 

Nodes C1 C2 C3 C4 C5 C6 C7 C8 Average Rank 

A5 5 2 1 1 1 2 1 1 1.75 

N2 1 1 4 4 2 1 2 2 2.125 

M4  4 2 2 3 6 3 3 3.285714286 

A4 4        4 

T  9 3 3 5 9 5 5 5.571428571 

F  5 7 7 6 5 6 6 6 

A6 14 7 5 5 4 7 4 4 6.25 

A12 7        7 

U 12 3 8 8 8 3 8 8 7.25 

Z 8        8 

J 13 11 6 6 7 11 6 6 8.25 

A13 3 4   12  12 12 8.6 

S8  12 9 9 9 12 9 9 9.857142857 

M5 10        10 

S6 11        11 

A23 15 8 14 14 10 8 10 10 11.125 

I7 2 10   15 10 15 15 11.16666667 

A22   10 10 13  13 13 11.8 

B 17 13 12 12 11 13 11 11 12.5 

D2 9 14 17 17 14 14 14 14 14.125 

S5  13 13    17 17 15 

A17  16    15   15.5 

I6  16 16      16 

I2  17    17   17 

 
We suggest sensitivity analysis could also be applied to this technique by using Equation (1) to change the 

weights. 

6. Summary and Comparisons 
We compare our MADM analysis with an average priority method using the information proved in Table 1 
where we transformed the node to a ranking position 1 - 20 and a complete AHP process. We present our results 
in the following Table 9. We find the node n2 is ranked number one is all methods except the average ranking 
from Table 1 that indicated that A5 is the top node. 
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Table 8. Weighted average ranks.                                                                                 

 Weighted Values Average Rank 

A5 1.188491069 0.428066412 0.166105921 0.125044271 0.105366024 0.152921867 0.046489075 0.028802357 0.280160874 2 

N2 0.237698214 0.214033206 0.664423682 0.500177085 0.210732047 0.076460933 0.09297815 0.057604713 0.256763504 1 

M4  0.856132824 0.332211841 0.250088543 0.316098071 0.4587656 0.139467225 0.08640707 0.348453025 3 

A4 0.950792855        0.950792855 11 

T  1.926298853 0.498317762 0.375132814 0.526830118 0.6881484 0.232445375 0.144011783 0.627312158 4 

F  1.070166029 1.162741444 0.875309899 0.632196142 0.382304667 0.27893445 0.172814139 0.653495253 5 

A6 3.327774994 1.498232441 0.830529603 0.625221356 0.421464095 0.535226533 0.1859563 0.115209426 0.942451843 9 

A6 3.327774994 1.498232441 0.830529603 0.625221356 0.421464095 0.535226533 0.1859563 0.115209426 0.942451843 9 

A12 1.663887497        1.663887497 18 

U 2.852378566 0.642099618 1.328847364 1.00035417 0.842928189 0.2293828 0.3719126 0.230418853 0.93729027 8 

Z 1.901585711        1.901585711 20 

J 3.09007678 2.354365265 0.996635523 0.750265628 0.737562166 0.841070266 0.27893445 0.172814139 1.152715527 14 

A13 0.713094642 0.856132824   1.264392284  0.5578689 0.345628279 0.747423385 6 

S8  2.568398471 1.494953285 1.125398441 0.948294213 0.9175312 0.418401675 0.259221209 1.104599785 12 

M5 2.376982139        2.376982139 22 

S6 2.614680352        2.614680352 24 

A23 3.565473208 1.712265647 2.325482887 1.750619798 1.053660236 0.611687466 0.46489075 0.288023566 1.471512945 15 

I7 0.475396428 2.140332059   1.580490355 0.764609333 0.697336125 0.432035349 1.015033275 13 

A22   1.661059205 1.250442713 1.369758307  0.604357975 0.374430635 1.052009767 7 

B 4.040869636 2.782431676 1.993271046 1.500531255 1.15902626 0.993992133 0.511379825 0.316825922 1.662290969 17 

D2 2.139283925 2.996464882 2.823800649 2.125752611 1.475124331 1.070453066 0.65084705 0.403232992 1.710619938 19 

S5  2.782431676 2.159376967    0.790314275 0.489640062 1.555440745 16 

A17  3.424531294    1.146914   2.285722647 21 

I6  3.424531294 2.657694728      3.041113011 25 

I2  3.6385645    1.299835866   2.469200183 23 

 
We compared the results and find they are similar. We have provided several approaches to ranking influential 

nodes (players) in a given social network. We have illustrated using the Noordin Dark Network with 79 nodes 
and found that nodes A5 and N2 were clearly always in the top. We believe that the incorporation of decision 
maker weights with the metrics of a given dark or social network is invaluable to analysis of key and influential 
players. 
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Table 9. Summary of multiple MADM methods applied to Noordin 79 node Dark Network.                               

Nodes Ranks Equal Weights Ranks Weighted TOPSIS Ranks (8 Criteria) TOPSIS Ranks (4 Criteria) 

A5 1 2 4 2 

N2 2 1 1 1 

M4 3 3 8 9 

A4 4 10 16 20 

T 5 4 9 10 

F 6 5 18 8 

A6 7 9 15 5 

A12 8 16 10 20 

U 9 8 17 6 

Z 10 19 19 20 

J 11 13 3 7 

A13 12 6 11 4 

S8 13 11 13 14 

M5 14 17 2 20 

S6 15 18 7 19 

A23 16 14 12 4 

I7 17 12 20 3 

A22 18 7 5 15 

B 19 15 6 13 
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