Biography

Dr. Shao-Xing Qu

Zhejiang University, China

Associate Professor


Email: squ@zju.edu.cn


Qualifications

2004  Ph.D., Mechanical Engineering, University of Illinois, Urbana-Champaign, USA
2000  M.Sc., Engineering Mechanics, Tsinghua University, China

1997  B.Sc., Theoretical & Applied Mechanics, University of Science & Technology of China, China


Publications (selected)
  1. Hui Yang, Xuefu Shang, Zhenhua Li, Shaoxing Qu, Zhiqi Gu, Yabo Xu, Miao Wang. 2010. Synthesis of large-area single-walled carbon nanotube films on glass substrate and their field electron emission properties. Materials Chemistry and Physics, 124, 78-82.
  2. Haofei Zhou, Shaoxing Qu, Wei Yang, 2010. Toughening by nano-scaled twin boundaries in nanocrystals. Modelling and Simulation in Materials Science and Engineering, 18, 065002.
  3. Q.P. Cao, J.W. Liu, K.J. Yang, F. Xu, Z.Q. Yao, A. Minkow, H.J. Fecht, J. Ivanisenko, L.Y. Chen, X.D. Wang, S.X. Qu, J.Z. Jiang, 2010. Effect of Pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass. Acta Materialia, 58, 1276-1292.
  4. Haofei Zhou, Shaoxing Qu, 2010. Molecular dynamics simulation of the interaction between nanoscale twin boundaries and partial dislocations. Journal of Computational and Theoretical Nanoscience, 7(10), 1931-1934.
  5. X.F. Shang, J.J. Zhou, P. Zhao, Z.H. Li, S. Qu, Z.Q. Gu, Y.B. Xu, M. Wang, 2010. The enhanced field-emission properties of screen-printed single-wall carbon nanotube film by electrostatic field. Applied Surface Science, 256, 2005-2008.
  6. Haofei Zhou, Shaoxing Qu, 2010. The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology, 21, 035706.
  7. Q.P. Cao, F. Xu, J.W. Liu, L.Y. Chen, X.D. Wang, J.Z. Jiang, A. Minkow, K.J. Yang, H.J. Fecht, J. Ivanisenko, S.X. Qu, 2009. Initiation and evolution of shear bands in bulk metallic glass under tension—An in situ scanning electron microscopy observation. Journal of Materials Research, 24, 2924-2930.
  8. Z.H. Li, X.F. Shang, S. Qu, Y.B. Xu, M. Wang, 2009. A novel method to produce large amount single-walled carbon nanotubes by arc discharging. Inorganic Materials, 45, 495-497.
  9. J. Qin, S. Qu, X. feng, Y. Huang, J. Xiao, K.C. Hwang, 2009. A numerical study of indentation with small spherical indenters. Acta Mechanica Solida Sinica, 22, 18-26.
  10. G. Feng, S. Qu, Y. Huang and William D. Nix, 2009. A quantitative analysis for the stress field around an elastoplastic indentation/contact. Journal of Materials Research, 24, 704-718.
  11. Tiefeng Li, , Zhenhua Li, Weiming Tao, Miao Wang, 2009. Investigation of the*Shaoxing Qu Mechanical Properties of the Ni-P-CNTs Coated Copper Composite Materials: Experiments and Modeling. Materials Science and Engineering A, 500, 182-187.
  12. L.Y. Chen, Q. Ge, S. Qu, J.Z. Jiang, 2008. Stress induced softening and hardening in a bulk metallic glass. Scripta Materialia, 59, 1210-1213.
  13. L.Y. Chen, Q. Ge, S. Qu, Q.K. Jiang, X.P. Nie, J.Z. Jiang, 2008. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution. Applied Physics Letters, 92, No211905.
  14. X.F. Shang, M. Wang, S.X. Qu, P. Zhao, J.J. Zhou, Y.B. Xu, M.Q. Tan, Z.H. Li, 2008. A model calculation of the tip filed distribution for a carbon nanotubes array and the optimum intertube distance. Nanotechnology, 19, 065708.
  15. X.F. Shang, M. Wang, S. Qu, Y.P. Ma, M.Q. Tan, Y.B. Xu, and Z.H. Li, 2007. A model calculation of the tip field distribution for a single carbon nanotube. Journal of Applied Physics, 105, No 054301.
  16. D. H. Warner, W.A. Curtin, and S. Qu, 2007. Rate dependence of crack-tip processes predicts twinning trends in f.c.c metals. Nature Materials, 6, 876-881.
  17. G. Feng, S. Qu, Y. Huang, W.D. Nix, 2007. An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Materialia, 55, 2929-2938.
  18. F. Zhang, Y. Huang, K.C. Hwang, S. Qu, and C. Liu, 2007. A three-dimensional strain gradient plasticity analysis of particle size effect in composite materials. Materials and Manufacturing processes, 22, 140-148.
  19. F. Zhang, R. Saha, Y. Huang, W.D. Nix, K.C. Hwang, S. Qu, M. Li, 2007. Indentation of a Hard Film on a Soft Substrate: Strain Gradient Hardening Effects. International Journal of Plasticity, 23, 25-43.
  20. S. Qu, Y. Huang, G.M. Pharr, and K.C. Hwang, 2006. The indentation size effect in the spherical indentation of iridium: a study via the conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity, 22, 1265-1286.
  21. S. Qu, V. Shastry, W.A. Curtin, and R.E. Miller, 2005. A finite-temperature dynamics coupled atomistic/discrete dislocation method. Modelling and Simulation in Materials Science and Engineering, 13, 1101-1118.
  22. B. Liu, H. Jiang, Y. Huang, S. Qu, M.-F. Yu, K.C. Hwang, 2005. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Physical Review B, 72, 035435.
  23. S. Qu, T. Siegmund, Y. Huang, P.D. Wu, F. Zhang, and K.C. Hwang, 2005. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain gradient plasticity. Composites Science and Technology, 65, 1244-1253.
  24. S. Qu, Y. Huang, H. Jiang, C. Liu, P.D. Wu, and K.C. Hwang, 2004. Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. International Journal of Fracture, 129, 199-220.
  25. S. Qu, Y. Huang, W.D. Nix, H. Jiang, F. Zhang, and K.C. Hwang, 2004. The indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation in hardness experiments. Journal of Materials Research, 19, 3423-3434.
  26. Y. Huang, S. Qu, K.C. Hwang, M. Li, and H. Gao, 2004. A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity, 20, 753-782.

Profile Details

NULL

Free SCIRP Newsletters
Copyright © 2006-2024 Scientific Research Publishing Inc. All Rights Reserved.
Top