Home > AM>
Biography

Prof. Leva A. Beklaryan

Russian Academy of Sciences, Russia

 

Email: Beklar@cemi.rssi.ru

 

Qualifications

1990 Doctor of Sciences in Mathematics, the Calculating Centre of the Academy Sciences of USSR, Russia

1978 Ph.D. in Mathematics, the Calculating Centre of the Academy Sciences of USSR, Russia

1974 Master in Mathematics, Moscow State University, Russia

 

Publications (Selected)

Monographs

  1. L.A.Beklaryan. Functional Differential  Equations // Jornal of Mathematical Sciences V.135, No2, (2006), P.2813-2954.
  2. L.A.Beklaryan. Introduction in the Theory of Functional Differential Equations. The Group approach // Moscow.: Factoryal Press, (2007), P. 288.

Textbooks

  1. L.A.Beklaryan. A Boundery Value Problem for  a Differentional Equation with Deviating Argument // Doklady Academii Nauk SSSR  Vol. 291 (1986), N1; English  transl. in Soviet Math. Dokl. Vol. 34 (1987), N3.
  2. L.A.Beklaryan. On a Method of Regularization of Boundery Value Problems for Differentional Equations with  Deviating Argument // Doklady Academii Nauk SSSR  Vol. 317 (1991), N5; English  transl. in Soviet Math. Dokl. Vol. 43 (1991), N2.     
  3. L.A.Beklaryan. An Optimal Problem for Systems with Deviating Argument, and  Its Connection with the Finitely Generated Group of Homeomorphisms of R Generated by the Deviation Funations // Doklady Academii Nauk SSSR  Vol. 317 (1991), N6; English  transl. in Soviet Math. Dokl. Vol. 43 (1991), N2.     
  4. L.A.Beklaryan. The Structure of the Quotient Group of a Group of Orientation-Preserving Homeomorphisms of R Modulo the Subgroup Generated by Union of Stabilizers // Rossiyskaya Academia Nauk. Doklady   Vol. 331 (1993), N2; English  transl. in Russian Acad.Sci.Dokl. Math. Vol. 48 (1994), N1.     
  5. L.A.Beklaryan. Invariant and Projectively-Inveriant Measures for Orientation-Preserving Homeomorphisms of R // Rossiyskaya Academia Nauk. Doklady   Vol. 332 (1993), N2; English  transl. in Russian Acad.Sci.Dokl. Math. Vol. 48 (1994), N2.     
  6. L.A.Beklaryan. To the theory of the linear differential equations with deviating argument // Uspehi Matematicheskih Nauk Vol.49 (1994), N6.
  7. L.A.Beklaryan. On the Classification of Groups of Orientation-Preserving Homeomorphisms of R. I. Invariant Measures // Matematicheskii Sbornic vol.187 (1996), N3; English  transl. in Sbornik: Mathematics Vol. 187, N3.   
  8. L.A.Beklaryan. On the Classification of Groups of Orientation-Preserving Homeomorphisms of R. II. Projectively-Invariant Measures // Matematicheskii Sbornic vol.187 (1996), N4; English  transl. in Sbornik: Mathematics Vol. 187, N4.   
  9. L.A.Beklaryan. The Criterion of the Existence of Projectively-Inveriant Measures for group of Orientation-Preserving Homeomorphisms of R, connected with structure of the set of fixed points // Uspehi Matematicheskih Nauk Vol.51 (1996), N3.
  10. L.A.Beklaryan. Introduction the Qualitative Theory of Equations with Deviating Argument and Their Applications. – Moscow: CEMI Russian Academy of Sciences, 1996.
  11. L.A.Beklaryan. Specific Group Properties of Differential Equations with Deviating Argument. Introduction to the Linear Theory // Matematicheskie Zametki, Vol.63 (1998), N4; English  transl. in Mathematical Notes, Vol. 63 (1998), N4.
  12. L.A.Beklaryan. On the Classification of Groups of Orientation-Preserving Homeomorphisms of R. III. Omega-Projectively-Invariant Measuresn // Matematicheskii Sbornic Vol.190 (1999), N4; English  transl. in Sbornik: Mathematics Vol. 190, N4.   
  13. L.A.Beklaryan. Group Features of Differential Equations with Deviating Argument and Connected with This the Metrical Invarians// Itogi Nauki i Tehniki Vol.67 (1999) (Dynamical Systims).
  14. L.A.Beklaryan. On a Criterion for the Topological Conjugacy of a quasisymmetric Group to a Group of Affine Transformations of R // Matematicheskii Sbornic Vol.191 (2000), N6; English  transl. in Sbornik: Mathematics Vol. 191, N6.
  15. L.A.Beklaryan. About Canonical Types  of the Differential Equations with Deviating Argument // Functional Differential Equations Vol.8 (2001), N1.
  16. L.A.Beklaryan. About Analog of Tit’s Alternative for Group of homeomorphisms of the circle and R // Matematicheskie Zametki, Vol.71 (2002), N3.
  17. L.A.Beklaryan. Equations of Advanced-Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems // J. of Mathem. Sciences, Vol.124 (2004), N4.
  18. L.A.Beklaryan. Introduction in the Theory of Functional Differential Equations and their Applications. The Group Approach // Modern Mathematics. Fundamental Directions, Vol.8 (2004).
  19. L.A.Beklaryan. Groups of Homeomorphisms of the Line and the Circle. Topological Characteristics and Metric Invariants // Russian Math. Surveys  59:4, (2004).
  20. L.A.Beklaryan. About Structure groups, which is quasisymmetric conjugacy to the group of an affine transformations of the line // Mathemat. Sbornik. Vol.196 (2005), N10.
  21. L.A.Beklaryan, N.Khachatryan. Trevelling wave type solutions in dynamic transport models // J. Functional Differential Equations, Vol.13 (2006), N2.
  22. L.A.Beklaryan, M.Kruchenov. About resolvability of the linear functional differential equations of pointwise type // J. Differen. Uravnenia. Vol.44 (2008), N5.
  23. L.A.Beklaryan. Groups transformations: topological characteristics and invariant measures, classification // J. Quasigroups and Related Systems.  Vol.16 (2008), N2.
  24. L.A.Beklaryan, F.Belousov. The existence of periodical solutions for functional differential equations // J. Functional Differential Equations Vol.15 (2009), N4.

Applications

  1. L.A.Beklarian, L.V.Andzhelov. Model of Investor-Region Interection in the Case of Complete Informetion and with Precence of Restrictions on the Level of Total Taxation./Working paper# WP/98/046.-Moscow, CEMI Russian Academy of Science, 1998.-26 p. (Rus).
  2. L.A.Beklarian, S.V.Borisova. One-Product Dynamically Model with Inertial Properties of the System. /Working paper# WP/98/045.-Moscow, CEMI Russian Academy of Science, 1998.-22 p. (Rus).
  3. L.A.Beklarian, S.V.Borisova. One-Product Dynamically Model with Inertial Properties of Introduced and Outpated Prodactional Funds. /Working paper# WP/2000/093.-Moscow, CEMI Russian Academy of Science, 2000.-56 p. (Rus).
  4. L.A.Beklarian, S.V.Sotsky. On One Model of Agreement of an Investment Contract // Economica i Matematicheskie Metodi Vol.36 (2000), N3.
  5. L.A.Beklarian, S.V.Sotsky. Optimization of the Level of Capital Invested in the Problem of Investment Contract Agreement // Economica i Matematicheskie Metodi Vol.36 (2000), N4.
  6. L.A.Beklarian, A.C.Akopov. The Model of Behavior of Natural Monopoly in Conditions of a Transition Period. /Working paper# WP/2000/098.-Moscow, CEMI Russian Academy of Science, 2000.-70 p. (Rus).
  7. L.A.Beklarian, R.V.Khachaturov. Optimization of Procedure of Accomodation of the Capital Taking Into Consideration the Regional Investment and Financial Policy. /Working paper# WP/2001/132.-Moscow, CEMI Russian Academy of Science, 2000.-24 p. (Rus).

Profile Details

Null