Smart Grid and Renewable Energy

Vol.7 No.3(2016), Paper ID 64716, 10 pages

DOI:10.4236/sgre.2016.73006

 

Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables

 

Victor Adrian Jimenez, Amelia Barrionuevo, Adrian Will, Sebastián Rodríguez

 

Grupo de Investigación en Tecnologías Informáticas Avanzadas, Facultad Regional Tucumán, Universidad Tecnológica Nacional, Tucumán, Argentina
Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Tucumán, Argentina
Grupo de Investigación en Tecnologías Informáticas Avanzadas, Facultad Regional Tucumán, Universidad Tecnológica Nacional, Tucumán, Argentina
Grupo de Investigación en Tecnologías Informáticas Avanzadas, Facultad Regional Tucumán, Universidad Tecnológica Nacional, Tucumán, Argentina

 

Copyright © 2016 Victor Adrian Jimenez, Amelia Barrionuevo, Adrian Will, Sebastián Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

How to Cite this Article


Jimenez, V. , Barrionuevo, A. , Will, A. and Rodríguez, S. (2016) Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables. Smart Grid and Renewable Energy, 7, 94-103. doi: 10.4236/sgre.2016.73006.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.