Modeling the Black Hole Recoil from the Nucleus of M83

Abstract

GEMINI + GMOS and Chandra emission-line spectroscopy reveal that the Fanaroff-Riley II radio-source J133658.3-295105 is a local object behind the barred-spiral galaxy M83 that is projected onto the galaxy’s disk at about 60" from the galaxy’s optical nucleus. J133658.3-295105 and its radiolobes are aligned with the optical nucleus of M83 and two other radio-sources neither of which are supernova remnants or HII regions. The optical nucleus of M83 is off-centered by 2.7" (≈60 pc) with regard to the kinematic center. Its mass is within the range (1 -4) × 106 and the velocity dispersion at its center points to a non-resolved mass concentration of ≤106 . In this paper we study the circumstances in which the radio source would have been ejected from the central region of M83. We analyze different types of collisions of binary and triple systems of super-massive black holes (SMBHs) by numerical simulations using a Post-Newtonian approximation of order 7/2 (~1/c7). We developed an N-body code specially built to numerically integrate the Post-Newtonian equations of motion with a symplectic method. Numerical experiments show that the code is robust enough to handle virtually any mass ratio between particles and to follow the interaction up to a SMBH separation of three Schwarzschild radii. We show that within the current Post-Newtonian approximation, a scenario in which one of the three SMBHs suffers a slingshot-like kick is best suited to explain the ejection of J133658.3-295105, which simultaneously produces the recoil of the remaining BH pair, which drags together a subset of stars from the original cluster forming a structure that mimics the off-center optical nucleus of M83. The simulation parameters are tuned to reproduce the velocities and positions of J133658.3-295105 as well as the optical nucleus and the putative SMBH at its center.

Share and Cite:

G. Ferrari, H. Dottori and R. Díaz, "Modeling the Black Hole Recoil from the Nucleus of M83," Journal of Modern Physics, Vol. 4 No. 7A, 2013, pp. 55-63. doi: 10.4236/jmp.2013.47A1007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Dottori, R. Diaz, J. Albacete-Colombo and D. Mast, The Astrophysical Journal, Vol. 717, 2010, pp. L42-L46. doi:10.1088/2041-8205/717/1/L42
[2] H. Dottori, R. Diaz and D. Mast, The Astronomical Journal, Vol. 136, 2008, pp. 2468-2472. doi:10.1088/0004-6256/136/6/2468
[3] L. Maddox et al., The Astronomical Journal, Vol. 132, 2006, pp. 310-320. doi:10.1086/505024
[4] D. Elmegreen, F. Chromey and A. Warren, The Astronomical Journal, Vol. 116, 1998, pp. 2834-2840. doi:10.1086/300657
[5] I. Rodrigues, H. Dottori, R. Díaz, M. Agüero and D. Mast, The Astronomical Journal, Vol. 137, 2009, pp. 4083-4090. doi:10.1088/0004-6256/137/5/4083
[6] N. Thatte, M. Tecza and R. Genzel, Astronomy & Astrophysics, Vol. 364, 2000, pp. L47-L53.
[7] L. Ferrarese and D. Merrit, The Astrophysical Journal Letters, Vol. 539, 2000, pp. L9-L12. doi:10.1086/312838
[8] K. Gebhardt, et al., The Astrophysical Journal Letters, Vol. 539, 2000, pp. L13-L16. doi:10.1086/312840
[9] T. Okamoto, R. Nemmen and R. Bower, Monthly Notices of the Royal Astronomical Society, Vol. 385, 2008, pp. 161-181. doi:10.1111/j.1365-2966.2008.12883.x
[10] E. Bonning, G. Shields and S. Salviander, The Astrophysical Journal Letters, Vol. 666, 2007, pp. L13-L16. doi:10.1086/521674
[11] L. Blecha and A. Loeb, Monthly Notices of the Royal Astronomical Society, Vol. 390, 2006, pp. 1311-1325.
[12] M. Iwasawa, Y. Funato and J. Makino, The Astrophysical Journal, Vol. 651, 2006, pp. 1059-1067. doi:10.1086/507473
[13] D. Batcheldor, A. Robinson, D. Axon, E. Perlman and D. Merritt, The Astrophysical Journal Letters, Vol. 717, 2010, pp. L6-L10. doi:10.1088/2041-8205/717/1/L6
[14] F. Civano, et al., The Astrophysical Journal, Vol. 717, 2010, pp. 209-222. doi:10.1088/0004-637X/717/1/209
[15] Y. Fujita, The Astrophysical Journal, Vol. 691, 2009, pp. 1050-1057. doi:10.1088/0004-637X/691/2/1050
[16] S. Mikkola and S. Aarseth, Celestial Mechanics and Dynamical Astronomy, Vol. 84, 2002, pp. 343-354.
[17] Y. Itoh, Physical Review D, Vol. 69, 2004, Article ID: 064018.
[18] Y. Itoh, Physical Review D, Vol. 80, 2009, Article ID: 124003.
[19] Y. Chu, Physical Review D, Vol. 79, 2009, Article ID: 044031.
[20] L. Blanchet, Living Reviews in Relativity, Vol. 9, 2006. doi:10.12942/lrr-2006-4
[21] S. Aarseth, Monthly Notices of the Royal Astronomical Society, Vol. 378, 2007, pp. 285-292. doi:10.1111/j.1365-2966.2007.11774.x
[22] M. Boyle, et al., Physical Review D, Vol. 76, 2007, Article ID: 124038.
[23] M. Fitchett, Monthly Notices of the Royal Astronomical Society, Vol. 203, 1983, pp. 1049-1062.
[24] C. Moore, Physical Review Letters, Vol. 70, 1993, pp. 3675-3679. doi:10.1103/PhysRevLett.70.3675
[25] A. Chenciner and R. Montgomery, Annals of Mathematics, Vol. 152, No. 3, 2000, pp. 881-901. doi:10.2307/2661357
[26] D. Heggie, Monthly Notices of the Royal Astronomical Society, Vol. 318, 2000, pp. L61-L63. doi:10.1046/j.1365-8711.2000.04027.x
[27] P. Peters, Physical Review, Vol. 136, 1964, pp. B1224-B1232. doi:10.1103/PhysRev.136.B1224
[28] L. Hernquist, The Astrophysical Journal, Vol. 356, 1990, pp. 359-364. doi:10.1086/168845
[29] S. Aarseth, M. Henon and R. Wielen, Astronomy & Astrophysics, Vol. 37, 1974, pp. 183-187.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.