Journal of Applied Mathematics and Physics, 2013, 1, 8-11
Published Online November 2013 (http://www.scirp.org/journal/jamp)
http://dx.doi.org/10.4236/jamp.2013.15002
Open Access JAMP
A Note on a Kinetic Model for Rod-Like
Particle Suspensions
Xiaolong Li
School of Sciences, Beijing University of Posts and Telecommunications, Beijing, China
Email: ttlixiaolong@gmail.com
Received August 9, 2013; revised September 8, 2013; accepted September 23, 2013
Copyright © 2013 Xiaolong Li. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
A system, coupled by an incompressible Navier-Stokes and a Fokker-Planck equation, is investigated. The global weak
solution with small initial data is obtained.
Keywords: Fokker-Planck Equation; Navier-Stokes Equation; Small Initial Data
1. Introduction
The dilute suspensions of passive rod-like particles can
be effectively modeled by a coupled microscopic Fok-
ker-Planck equation and macroscopic Navier-Stokes equa-
tion, known as Doi model (see Doi [1]). We refer to [2]
for the Doi model for suspensions of active rod-like
particles without considering the effects of gravity. Re-
cently an extended model under gravity was introduced
by Hezel, Otto and Tzavaras [3], which reads


2
tx nnx
xx
f
uffId nnunf
Idnne ff
 
 
(1)

1d
d
sdnnId fn

(2)

12
Re
d
d
txx
xS
uu uu p
fne
 

 


x
d
d
R
(3)
0
xu  (4)
where is a bounded
domain with of class and being
the unit sphere;

1
,, 0,,
d
txnS R

 1
C1d
S
is a stress tensor, is the pressure,
is the unit vector in the upward direction; n
p
2
e
and
n denote the tangential divergence and Laplace-Bel-
trami operator on , respectively. In this model,
1d
S

,,
f
tx
x
n
Re 0
is a distribution function which represents the
configuration of a suspension of rod-like particles and
is the fluid velocity induced by the other
particles in the suspension. is a Reynolds
,ut
number. The coefficients 0
and 0
are con-
stants (see [3], Remark 2.1 - 2.2).
If Re 0
, the model includes a Stokes equation. In
this case, Chen, Li and Liu [4] obtain the global weak
solution and its uniqueness to the two dimensional
2d
initial-boundary problem. In Remark 3.2 of [4],
they point out that it is a mathematically interesting
question to ask if the above result is still valid when the
Stokes equation is replaced by the Navier-Stokes equa-
tion
Re 0, and there are some technical difficulties
in solving this problem. The main purpose of this note is
to answer this question by using an assumption of small
initial data. See [5-7] etc. for more results on Doi related
model without considering the effects of gravity.
For conciseness in presentation, we set
Re 1

in the rest of this paper. Define
2:0,
x
HuLu u
 0

1
0:0
x
VuHu
, and
1
:SS
:log11, 0,Fs sss
 . Let , define
the cut-off function
1L
0, if0,
:,if
,if.
L
s
Ess
LsL
,L
Set the initial and boundary conditions as follows,
00 00
;
tt
;
f
fu u

 (5)
20; 0.
x
Idnneffu
 
 
(6)
X. L. LI 9
2. The Main Result
Theorem 2.1 Let . Suppose that 2d0
uH
,
2
0
f
LS, and 0 a.e. are on Then
there exists
0f.S
0
, such that if


2
2
00
dd ,
LS
uFfnx

(7)
the initial-boundary problem (1)-(6) has a global weak
solution which satisfies for a.e. ,
,uf [0, )t












22
22
21
22
t
0
22
0
22
000
2dd2 d
4d
2dd .
x
LL
S
t
xn
LS LS
LLS
S
utFf tnxuss
fsfs s
uFfnxCf


 




 


 

(8)
Definition 2.2 The weak solution is in the fol-
lowing sense,
,uf
21
0,;0,; ,0,;
loc
uLH LVuHV
;
(9)
1
0..on0,, 0,;
f
aeS fLLS

(10)

22
,0,;
xn
f
fLL S (11)





221
13
0, ;0, ;,
0, ;;
loc loc
loc
f
LLSLHS
fHH S
 




(12)
for any with .

00,vC
 0
xv


 
00
0
0
20
0
dd dd
:dd
2:ddd
ddd0, d;
tx
xx
x
S
S
uvxtuu vxt
uvxt
nnIdf vnxt
f
evnxtuxv xx



 

 

 


 

(13)
for any

00,CS
,



 
00
0
0
2
0
0
ddd( )ddd
ddd
ddd
ddd
,0,,dd.
tx
SS
nn
S
xn
S
xx
S
S
f
nxtuf nxt
fnxt
Idnnunfn x t
I
dnnef fnxt
fxn xnnx


 




 




 



(14)
Proof. The proof follows that of [4] (some ideas and
techniques come from [8]). Here we only show the dif-
ferent details.
Step 1. Approximate problem. For any fixed
01
and for any kN
, given
11
,
kk
uf

, the
approximate problem with cut-off reads


1
1
2
d:
d
2d:d
dd, ;
kk k
xx
kk
x
kx
S
k
S
uu vxu vx
uuvx
nnIf vnx
fe vnxv V



 

 


d
d
(15)





14
1/4
1
2
1
dd
()dd
dd
dd
dd,
.
kk
S
kk x
S
k
nn
S
kk
xn
S
kk
xx
S
ff nx
uf nx
fnx
IdnnunEfn x
I
dnneE ffnx
HS








 


 

 
(16)
Similarly as the proof of [4], we have
Lemma 2.3
Let
2
::0..
Z
fLSf ae S
 .
If
11
,
kk
uf VZ

, then there exists
,S
1kk
ufV ZH which solves (15)-(16).
Step 2. Uniform estimate. Suppose that 0
uH
,
2
0
fL S
 and a.e. on . Let
00fS
00
uu
be the solution of 0140 0
uuu
. Then
 
2
22
22
2
0140
0xL
LL
uuu

 (17)
and weakly in as
0
0
uuH0
. Moreover, let

14
0
0
fEf
. Then
00
,uf VZ . Using Lemma
2.3 iteratively, we obtain a sequence of approximate so-
lutions,
1
,
kk
ufV ZHS  (18)
to (15)-(16). Similarly as the proof of Lemma 3.5 and
Lemma 3.6 in [4], we have
Lemma 2.4
 
1
10
sup k
L
S
LS
kN ff


(19)
For any kN
,

 
 



2
22
22
21
2
22
1
11
22
1
2
000
1dd
2
1
2
2
1dd .
2
kk
S
L
kk
kk i
x
LL
ii
kii
xn
LS LS
i
L
LS
S
uFfnx
uu u
ff
uFfnxCf



 


 

 


 

(20)
Open Access JAMP
X. L. LI
Open Access JAMP
10
Lemma 2.5 For any we might as well set 0T
NT
. Then



22
0, ;0, ;
;π.
LTL LTV
uu C

(23)
  


22
22
11
sup
.
N
kkk
xn
LSLS LS
kN k
fff
CT
 

 





221
0, ;0, ;.
LTL SLTH S
fC

T
(24)
2
2
(21)
Proof. We can use (17), (19)-(21) directly to finish the
proof. Here we only show that πu
is bounded. In fact,
it follows from (17) and (20) that
Proof. Following the proof of (3.44) in [4], we have
that
 

 


22
22
22
1
22
0
1
1.
k
ki
xn
LSLS LS
i
kii
x


 

22
0
0, ;0, ;
πmax ,,
LTLL LTL
uuu
 


2
2
2
2
2
i
L
SL
i
fff
fCu f
 
 
 




 
 
22
22
22
2
0, ;
1
22
0
1
12
2
0
0
π
.
xLTL
Ni
xx
LL
i
Ni
x
LL
i
u
uu
uu


C
 
 
LS
Applying (20), one has 0
, such that if
00
,uf
satisfies


2
2
00
LS
uFfdndx


, then

2
2
1
1
4
ki
xL
i
Cu
Lemma 2.8
. Furthermore, let 14C
, then


 
222
22 2
1
1,
2
kk k
xLLSL
Cu ff

 
 


223
0, ;0, ;
tt
LTVLTH S
uf






 CT
(25)
S
Proof. Observing that

11
dd
kkk k
xx
uuvxuvuxv


and hence ,V
 


 


2
222
2
122
2
0
1
1
2
1.
k
LS
kii
x
LS
L
LS
i
f
fCu f

 

we deduce from (15) that,
  

22
2
1
1
:.
kk
V
kkk k
xLL
L
uu
uuu Cf

 1
LS
Using (20) again, and the discrete Gronwall inequality,
We finish the proof of (21).
Definition 2.6 Define the piecewise function in t by Therefore, please see the Equation (26) below.
 
1
,: , ,:,1,
kk
ut uut utkk



Employing Gagliardo-Nirenberg inequality and Hölder
inequality, one has from (23) that
and the difference quotient of size
by


 

42 2
2
0,0, ;0, ;.
LTLTV LTL
uuu

 C
 

1
,:, 1,
kk
t
uu
utt kk
 

Similarly,


4
2
0,
π.
LT
u

 C
Then it follows from
Likewise, define
f
and .
t
f
(23), (24) and (26) that


2
2
0, ;.
tLTV
uC
T Accord-
Lemma 2.7
0..on0, .
f
ae TS
 ing to (16), we have that for any

3
H
S
,
 (22)

  
  









2
22
2
22
2
24 42
12
2
1
0, ;1
12
2
1
1
12
2
1
1
0,0,0,0, .
kk
N
tLTV kV
Nkkk k
xLLS
L
k
Nk
xLLS
L
k
k
xLTLTLTLTS
uu
u
Cuuu f
Cuuuf
Cu uuf




  







 





 




 
(26)
X. L. LI 11

1
dd
dd dd
dd
dd.
kk
S
kk k
xnn
SS
kk
xn
S
kk
xx
S
ff nx
uf nxf nx
Cuf nx
Cff nx


 



 


Consequently


  
3
12 1
1
.
kk
HS
kk k
HLSH
ff
Cu ff



S
Similarly as the proof of (26), we have from (23) and
(24) that



23
2
0, ;.
tLTH S
f
CT





Step 3. Convergence. With the above uniform esti-
mates at hand, we can use the Aubin-Lions lemma for
time-piecewise functions (see [9]) to perform the com-
pactness argument. This concludes the proof of Theorem
2.1.
REFERENCES
[1] M. Doi and S. F. Edwards, “The Theory of Polymer Dy-
namics,” Oxford University Press, Oxford, 1986.
[2] F. Otto and A. E. Tzavaras, “Continuity of Velocity Gra-
dient in Suspensions of Rod-Like Molecules,” Commu-
nications in Mathematical Physics, Vol. 277, No. 3, 2008,
pp. 729-758.
http://dx.doi.org/10.1007/s00220-007-0373-5
[3] C. Helzel, F. Otto and A. E. Tzavaras, “A Kinetic Model
for the Sedimentation of Rod-Like Particles,” 2011.
[4] X. Q. Chen, X. L. Li and J.-G. Liu, “Existence and Uni-
queness of Global Weak Solution to a Kinetic Model for
the Sedimentation of Rod-Like Particles,” Communica-
tions in Mathematical Sciences, 2013.
[5] P. Constantin, “Nonlinear Fokker-Planck Navier-Stokes
Systems,” Communications in Mathematical Sciences, Vol.
3, No. 4, 2005, pp. 531-544.
http://dx.doi.org/10.4310/CMS.2005.v3.n4.a4
[6] P. L. Lions and N. Masmoudi, “Global Solutions of Weak
Solutions to Some Micro-Macro Models,” Comptes Ren-
dus Mathematique, Vol. 345, No. 1, 2007, pp. 15-20.
http://dx.doi.org/10.1016/j.crma.2007.05.011
[7] Y. Z. Sun and Z. F. Zhang, “Global Well-Posedness for
the 2D Micro-Macro Models in the Bounded Domain,”
Communications in Mathematical Physics, Vol. 303, No.
2, 2011, pp. 361-383.
http://dx.doi.org/10.1007/s00220-010-1170-0
[8] W. J. Barrett and E. Süli, “Existence and Equilibration of
Global Weak Solutions to Kinetic Models for Dilute Po-
lymers I: Finitely Extensible Nonlinear Bead-Spring
Chains,” Mathematical Models and Methods in Applied
Sciences, Vol. 21, No. 6, 2011, pp. 1211-1289.
http://dx.doi.org/10.1142/S0218202511005313
[9] M. Dreher and A. Jüngel, “Compact Families of Piece-
wise Constant Funcitons in L^p(0,T;B),” Nonlinear Ana-
lysis, Vol. 75, No. 6, 2012, pp. 3072-3077.
http://dx.doi.org/10.1016/j.na.2011.12.004
Open Access JAMP