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Abstract 
 
In certain computational systems the amount of space required to execute an algorithm is even more restric-
tive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular 
multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound 
for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of num-
bers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the 
worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its 
implementation as a subroutine in communication-secure wireless devices. 
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1. Algorithm for Modulo Multiplicative  
Inverse 

 
The operation of modular multiplicative inverse is essen-
tial for public-key encryption, modular arithmetic [1] and 
for applications based on the Chinese Remainder Theo-
rem [2]. 
 
1.1. Introduction 
 
Operation of multiplicative inverse modulo n is a basic 
operation in modular arithmetic. A number x is called a 
modular multiplicative inverse, (MMI, for short) of  
modulo , [2], if it satisfies equation 

1p

0p

1 0mod 1p x p  .              (1.1) 

 
1.2. Enhanced-Euclid Algorithm (EEA) 
 
Consider integer variables L, M, S, t and Boolean vari-
able c;  

Assign ; 0:L p 1:M p ; ; : 0c 
Repeat :t L M    ;  
:S L Mt  ; ; ; : 1c c  :L M :M S ;        (1.2) 
push t {onto the top of the stack};            (1.3) 
until either S = 1 or S = 0; 
if S = 0, then  0 1gcd ,p p M ; output “MMI does 

not exist”;  0 1gcd ,M p p
: 0S

; 
else assign  ; : 1M  ; 
repeat pop t {from the top of the stack};  

:L Mt S  :S M;  ; :M L ;        (1.4) 
until the stack is empty; output 
if c = 0 then :MMI L  else 0:MMI p L  ; 

for more details see [3,4]. 
The algorithm is valid for both cases: for 0 or p p
0 1 p p . In the latter case, assign . 1 1 0

Validity of the EEA is discussed in [3] and its time 
complexity is analyzed in [4]. Although both analysis 
and computer experiments demonstrate that the EEA is 
faster than the Extended-Euclid algorithm [2], the EEA 
requires the storage of stack, {see (1.3)-(1.4)}. The 
worst-case space complexity of the EEA is analyzed in 
this paper if 

: mp p od p

0p  1p .                (1.5) 

 
2. Bit-Storage Required for Stack 
 
2.1. Direct Problem 
 
Let  0 1, p

p
N p  be the number of bits required to store 

the stack. Find a maximal 0  such that for all values of 

1  satisfying (1.5) the EEA does not require more than 
s bits for storage of the stack. Consider optimization 
p
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1





problems: 

   
1 0

0 0
2

, : max ,
p p

Q s p N p p s
 

  ,    (2.1) 

and let 

  
0 0: max ,pq s Q s p .           (2.2) 

 
2.2. Dual Problem 
 
In order to analyze space complexity of the EEA let’s 
consider a sequence  0 1, , , ,kn n n       generated in ac-
cordance with the following rules: let ; 1a b 

1 1:k k k kn q n n    , where all  and 11kq  :n a;   

0  and for all ,  are integers. Then for 
every  

: ;n b
1k 

1k  kn

   1 1

1
, ,

1 0
k

k k k k

q
n n n n 

 
 

 




,0



T

s



  [5].      (2.3) 

Therefore, for every integer  1r 

   1 1

1
, ,

1 0
r k

r r k

q
n n a b 

 
 

 
 ;         (2.4) 

and     .    1 1

1
, 1

1 0

r Tk
r k

q
n a b 

 
  

 


Suppose that a memory that stores an array of quo-
tients  has restricted capacity. For in- 
stance, suppose that it cannot store more than s bits. 
Consider the following optimization problem: 

 1 2 1, ,..., ,r rq q q q

Find 

 
 

   1: 1,..,

1
, : min , 1,0

1 0k

r k

kq k r

q
n r s a b



 
  

 
   (2.5) 

under constraint 

2
1

log 2
r

k
k

q


   ,           (2.6) 

where integers a, b, r and s in (2.5) and (2.6) are speci-
fied parameters. 

Here 2  is the number of bits required for 
storing quotient k , and (2.6) describes the constraint 
that the total allowed bit-storage for r quotients is equal 
to s. Let  

log 2 kq
q

   : min ,
r

n s n r s .           (2.7) 

Then for every integer s 

   q s n s    (2.2).          (2.8) 

 
3. Properties of Optimal Quotients 
 
Consider   (2.3).  1 2 1, , , ,r rq q q q  

Then the following properties hold: 
Proposition 3.1: All optimal  must be exact pow-

ers of two.  
kq

Proof: Let’s assume that the theorem is incorrect. This 
implies that for the same s, the value of  would be 
larger.  

 n s

Indeed, consider for all  1k 

12 2k ki i
k kq q    . 

Then for all  the inequality k k  holds. Here 1k 
a

n n

0 1: ; :n b n    and all kn  are generated itera- tively as 

1 1 2k:k k kn q n n  
    . At the same time both arrays of 

quotients require the same size of bit storage. 
Let 0 :E I {identity matrix} and for all  1i 

12 1
:

1 0

i

iE
 

 
 



T

.             (3.1) 

Then (2.5) may be rewritten as 

     1 
, : min , 1,0

k
k

r

ikall q
n r s a b E


  .    (3.2) 

Proposition 3.2: Since a spectral radius of matrix  
is larger than the spectral radius of matrix 2 , the se-
quence 

2
1E

E
 1, , ,kn n 

q

n

, generated by an array of length 
2m with all k = 1, grows faster than the sequence gener-
ated by an array of length m with all k = 2. Yet both ar-
rays require the same storage. Hence all k = 2 generate 
smaller 1r

q
q

  than the unary array of the quotients. This 
observation provides a simple way to find an upper bound 
 h s  for  n s

2
. Indeed, , , and for 

all  
 0 2h   2 5h

s 

    2 2 2 2 2 4h s h s h s     .    (3.3) 

Remark 3.1: Let   : 2 H s h s ; then  0 2H  ; 

      1 5; : 2 1 2H H s H s H s      .   (3.4) 

Representing the upper bound  H s  as  
  s sH s    , [5,6], and using (3.4), we derive that 

      1 3 2 1 2 4
s

h s o s    .    (3.5) 

For s = 40,  40h  = 93,222,358, while the exact up-
per bound  40n  = 80,198,051 {see (8.3) below}, i.e., 
the relative difference between  and  40h  40n  is 
more than 16%. However, for larger values of s this dif-
ference is significantly increasing, namely  

   lim
s

h s n s


  . 

Let us now consider properties of control variables 
that help to determine their optimal values. 

Copyright © 2011 SciRes.                                                                                IJCNS 
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4. Diagonally Decreasing Matrices 
 
4.1. Definition 
 

 ij m n
R r


  is a diagonally decreasing matrix, {or D-ma- 

trix for short}, if  for every  and ij klr r i k j l . 

Hence for every ,  are D-matrices. 1 kEk

 
4.2. Properties of D-Matrices 
 

1) A product of D-matrices is a D-matrix; 
2) Transposed D-matrix is also a D-matrix. 
Let us consider the function 

    , , : 1, 1,
TF X u w u X w ,     (4.1) 

where  is a two-dimensional square matrix (all 
further inequalities involving matrices are to be taken 
entry-wise), u > 0 and . 

0X 

0w 
Remark4.1: For the sake of simplicity in forthcoming 

inequalities we use (wherever it is necessary) a normali-
zation 

        , , 1, 1, , ,
T T

a b X c d ac b a X d c acF X u w   , 

(4.2) 

where :u b a ; :w d c . 

Let            .         (4.3)    : ,.F X F X ,.

It is easy to verify that if , then 0X Y 

   F X F Y .             (4.4) 

For example, since , then 2
1E E 2

2   2
1F E F E .            (4.5) 

 
5. Decomposition 
 

Proposition 5.1: Let 

0 1;   0u w   1









;          (5.1) 

then the inequality  

    0k m k mF E F E E          (5.2) 

holds if  

1;   1;  3,  and  0k m k m w     .  (5.3) 

Proof: Consider  

       1, 1, 0
T

k m k m k m k mF E F E E u E E E w    , 
(5.4) 

and find under what conditions it holds. 

Let ; ; then 1: 2kx  1: 2my 

2 1 1 1

1 0 1 0 1 0

1 1
.

1 0 1

k m k m

xy x y
E E E

xy x

y


   

     
   
   

    
   

  (5.5) 

Therefore, definitions (4.1) and (4.3), and Equations 
(5.4) and (5.5) imply the following inequality: 

     1 12 2 1 1k mu w u w       uw .  (5.6) 

On the other hand, if (5.6) holds, then (4.4) also holds. 
In addition, it is sufficient to observe that (5.6) indeed 
holds if  and w = 0. 1;   1;  3,k m k m   

However, (5.6) does not hold if k = m = 1. 
Q.E.D. 

 
6. Transposition 
 

Proposition 6.1: The inequality 

   1, 1,
T

k m m ku E E E E w >0      (6.1) 

holds if ( )  and k m w u 

or if           ( and <k m w u ).               (6.2) 

1k: 2xProof: Let  ; ; 1: 2my 
1

:
1 0

x
X

 
  
 

 and 

. 
1

:
1 0

y
Y

 
  
 

Thus, 

 
0 0

0 1

x y
XY YX x y

y x

  
        

1

0





.  (6.3) 

Therefore, inequality 

    1, 1, 0
T

u XY YX w         (6.4) 

holds if          0x y w u   .             (6.5) 

Hence, inequality (6.1) can be rewritten as 

  1 12 2m k u w  0   ;         (6.6) 

and (6.6) holds if 

  sign signm k u w   .     Q.E.D. 

In addition, inequality (6.6) implies that if w = 0, then 
inequality (6.1) holds if k < m. 

Let 

   2 1: ; 1, 1,
T

E E E E v v  T
     (6.7) 

where   is the largest eigenvalue of E. 

Copyright © 2011 SciRes.                                                                                IJCNS 
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Since , i.e., with all positive elements,  
3 2

0
1 1

E
 

  
 

then by Perron-Frobenius Theorem [7] its largest eigen-
value 0 


 with positive corresponding eigenvector 

, where   (6.7).  1,v 0v 
Indeed, 2 3    and  3 1 2v   . 

 
7. Optimal Control Variables 
 
7.1. Cases s = 0, 1, 2 
 
It is easy to verify that . To find  0 2n  ;  1n  3  2n  
we must compare two cases only. From the Decomposi- 
tion Theorem it follows that   2, E  1 2,a b Ea b  for all 
a > 0 and b > 0. 

Hence, ; and, if , then 1 2oq    , 2,a b  1  2 5n  . 
 
7.2. Case s = 3 
 

Let 3 :X E  and . 2 1 :E E E
Then 

           3 1 2 2 12,1 1,0 2,1 1,0 2,1 1,0  
T T

E E E E E  T
 

(7.1) 
or after normalization 

       
   
   

3 1

2 1

1,1 2 1,0 1,1 2 1,0

1,1 2 1,0

1,1 2 1,0     

T

T

T

E E E

E E

E







2

T

    (7.2) 

Here 1 2u   and w = 0. Since in (7.2) w = 0, then 
the left-most inequality follows from the Decomposition 
{Proposition5.1} and the right-most inequality follows 
from the Transposition {Proposition6.1}. Thus, the op-
timal control variables are 

1 2oq  ,  and . 2 1oq   3 7n 

 
7.3. Case s = 4 
 
The following scheme shows that there are two local 
minima. Indeed, consider 4:  X E . Using the Decom-
position and Transposition Theorems we can decrease 
the value of function  F X . This procedure leads to two 
local minima: Let  A B  means that    F A F B , 
i.e., 

2
2 1 3 1 4 1 3 1 2

2 2
2 1 2 1 2 1 2 1 2

  

                     

E E E E E E E E E

E E E E E E E E E

   

    

2

2

 

Direct comparison implies that 

     2
2 1 2 1 1>  F E F E E E F E E .     (7.3) 

Hence the optimal control variables are equal 
0
1q  0

3 1q   and 0
2 2q  . 

Thus  4 1n 1 . 
 
7.4. Case s = 5 
 
Consider 5:X E . Systematically applying decomposi-
tion and transposition, it is possible to demonstrate, that 
there are two local minima: 2 1 2  and 2  only 
(6.7). {see the diagram below}. The direct comparison 
shows that  delivers the global minimum. 

E E E

p

E E

2

Proposition 7.1: Let  and  be a pair that re-

quires s bits of storage; 

E E

0p

: (

1

2,1)L  ;  : 1,0
T

R  ; 3s m j  ; 

0 j 2   and  

  
k

all k

i s .                   (7.4) 

Then 

  
min

i

m
qi q j

all q
i

L E R LE E R .     (7.5) 

Proof: (by induction over m). 
(1) m = 0: for j = 1 and j = 2 we proved in the Subsec-

tion 6.1 that jLE R  is the minimum. 
For j = 3 we proved in (6.1)-(6.2) that 
 3 1 2L E E E R

LER
 , and that , 

i.e.,  is the minimum. 
0  1 2 2 1 0mL E E E E E R 

(2) Let for = 0,1, ,m k 
:E I

  be the minimum 
if j = 0, 1, 2; { 0

m
jLE E R

 , (3.1)} and correspondingly 
 be the optimal control strategy. m

jE E
(3) Let us insert matrix 3  into  and prove 

that the following two inequalities hold: 
E k

j E RLE

 3 1 2 0k
jLE E E E E R         (7.6) 

and 

 1 2 2 1 0k
jLE E E E E E R  .    (7.7) 

Let  0 0: ,j j jLE a b , and for all m 

   0 0, : , m
mj mj j ja b a b E .      (7.8) 

Here L,  are D-matrices, {see the Defi-
nition 3.1}. Hence 

,   and jE E R

jLE  and  are also D-ma- 
trices, {as products of D-matrices}, i.e.,  for 
all i = 0, 1, 2,… 

k
jLE E

0ij ija b 

Dividing the inequalities (7.6) and (7.7) by , we 
can respectively rewrite them as 

kja

   3 1 21, 1,0 0
T

kju E E E        (7.9) 

and as 

Copyright © 2011 SciRes.                                                                                IJCNS 
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    (7.10) 

Then inequality (7.9) holds by the Dec
Th

   1 2 2 11, 1,0 0
T

kju E E E E 

omposition 
eorem because w = 0, 0 1kju  , and :kj kj kju b a . 

On the other hand, inequa holds -
position Theorem because 0kju w  . Therefore 

1
2 1( )k k

j jLE E E E R LE E ER R   is the min
egy. 

lity (6.10) 

LE E 

al control str

by the Trans

k
j imum 

Q.E.D. 
Remark 7.1: Another (more tedious) way to pr

Th

and 1k
jE E   is the optim at

ove the 
eorem is to consider an induction over m and j. Firstly, 

we make an assumption that for all = 0,1, ,m k   and 
for all j = 0, 1, 2 m

jLE E R  is the min m
j E  

is the optimal strat  we prove that for ever

1 i m   

imum and E
y egy. Then

     1 1
1 1

i m i i m i m
j jF E E E E F E E E E F AE       . 

(7.1  

Here ; 

1)

0 :E I 1: jA E   if j = 0 or j = 1; and :A E  
if 

ition 7.2: for all j = 0, 1, 2 and for all 

j = 2. The application of all transpositions is b  
the following propositions (provided here without 
proofs): 

Propos

ased on

1,2,i     

0 1 1u u v w w                 0 0j j ij lu w  ,

(7.12
if 

) 

 0 3 1 2ju v   .          (7.13) 

Here all are defined in (4.2) and (7.8), and v satis-
fies the conditi

iju  
on    1, 1,Tv E v , i.e., v is the second 

component of a norm or of matrix E, 
corresponding to the largest eigenvalue 

alized eigenvect
  of E, [7]. 

Direct computation shows that indeed the nequalities 

0 ju v  are satisfied for every j = 0, 1, 2. 
fore, 

 i

There

   1 1
1 1

i m i i m i
j jF E E E E F E E E E        (7.14) 

holds for every 

. Optimal Control Variables 

et be a minimal that requires no more than 

1, , .i m    
 
8
 
L  n s  

s of s
0p  

acks bit torage for the st . The minimal values  n s  
are generated by the following optimal quotients 0

kq
1) If s = 3m, then for every 1k   

: 

0 1 mod 2kq k  ;          (8.1) 

2) If s = 3m + r, and r = 1,2, then
e

           (8.2) 

Examples: 

 0q r , and for 1

very 2k   

0 2 mod 2kq k  .

 0 2n  ;  1 3n  ; n 2 5 ;  3 7n  ; 

 4 11n  ;  5 17n  ;  6 26 ; n n   7 4 ;1  8 6n 3 ; 

 9 9n 7 ;  10 1 53n ;  11 235n  ;  12n 362; 

 13 5n  71;  14n  877 14;  15n 12;  

 20 12,863n  ;…;  40 80,198,051n       .    (8.3) 

 
. Telescopic Relations for Tight Upper 9

Bound  n s  
 

ce for i = Sin 0, 1, 2 

0       (9.1) 

let us find telescopic relations for  in 

3n m    2,1 1,
Tm

ii E E  ,

 n s the following 
form [7]:  

    2 3 1 3i ii x n m i y n m 13n m          (9.2) 

where ix  and must satisfy equations iy  

     2 1 22 1,0
Tm

i i i i iA x A y A E E ,1 0   ;    (9.3) 

and where  

1

, 0,1, 2

,      3

,   4

i

i

E i

A E i

E E i


 
 

.           (9.4) 

From these equations we find all ix  and  and es-
ta

iy
blish the following telescopic relatio  for ns  n s : 

     4 3 3 1 11 3 2n m n m n m       ;   (9.5) 

     11 3 1 18 3 3 1n m n m n m   ;       (9.6) 

    3 2 3 1 4 3n m n m n m     
Therefore 

  [6].   (9.7) 

     3 2 3 3 3 3m n m n m   n   ;    (9.8) 

     3 1 3 11 3 3 3n m n m n m       ;  (9.9) 

     3 3 3 3 3n m n m n m   and finally, 4    or 

    3 3 4 3 3 3m n m n m n     .    0) 

 
0. Closed-Form Expressions for 

  (9.1

1  n s  
 
Direct substitution shows that  

     1
3 2 3

m
n m

 1
2 3 2

m     
.  (10.1) 

satisfies (9.10) for every integer .  0m 
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e can d closed-form 
ex

Using (9.8), (9.9) and (10.1), w  fin
pressions for  

 

       
3 2n m 

2 3 1 1 3 2 3 1 1 3 2
m m        

 

(10.2) 
and for 

 

       
3 1

2 3 3 1 3 2 3 3 1 3 2
m m

n m 

     

 

(10.3) 

The tight-upper bound on the required bit-stor
de

orage required by EEA for 
st




age is 
ducible from the following 
Proposition 10.1: The bit-st

orage of the stack in the worst case satisfies equation: 

     
1 0

0 1 0 02 32 p p    

Proof: Since 

max , 3 log 1N p p p p   ,   (10.4) 

2 3 1 , then definitions (2.1)-(2.2) 

an -(10.3) i

1. Asymptotic Rate of Growth/Bit 

et 

d formulas (10.1) mply (10.4). 
 
1
 
L 3 ;s m i   represent  n s  in a form 

   (11.1) 

The asymptotic rate of growth u equ

   3 m in m i m       3
ia u

als to  r E , 
where  r E  is a spectral radius of matrix E, [8-10 , 

the larg  of equation 

], i.e.

est root
3 2

0


 . 
1 1 

Since 1,2 2 3   , then 

3 2 3u   =1.5511335     (11.2) 

This observation independent
re

ly verifies the stronger 
sults of (10.1)-(10.3). Indeed, we can find the asymp-

totic rate of growth/bit by taking into account that 

 2 3 0
m

   in (10.1)-(10.3) for large m. Finally, 

since 31 2 2 3   , then the tight upper bound 

 n s  grows slower than  h s   (3.5). 

ain Theorem: Let M  0  denote thN p
ore al

e max
nu

imal 
mber of bits required to st l quotients in the stack  

if the modulus equals p ; and let 0
3: 2 3u   . If 

 0 0 1 0, 1 ,    then 3 ;u N p m   3 3 1m mp a u a    

+ 1;

3) 

whe

 3 1 3 2
0 1 2 0, 1 , then 3m mp a u a u N p m     

   3 13 2
0 2 0 0, 1 , then 3 + 2mmp a u a u N p m      

(11

re 

.

0 1 2;a    1 3 1 3 2a   ; and  2 1 1a 3 2 

f follow om (11.1) and 10.4). 
 
2

rved results, Enhanced-Euclid 

ino, D. Murphy and 

P. C. van Oorschot and S. A. Vanstone, 
“Handbook of Applied Cryptography,” CRC Press, Boca 

ter Programming, Vol. 1, Addison-Wesley, 

erse and Its Complexity,” Proceed- 

e Inverse and Its Cryptographic Applica- 

. 

Proo s fr (10.1)-(

1 . Conclusions 
 

As it follows from the obse
algorithm requires very small bit-storage for its execu- 
tion. This storage does not exceed a 2K-bit level for pub-
lic-key encryption algorithms, dealing with numbers 

0 1and  p p  of range 100 400(10 ,10 ) . As it is demonstrated 
in numerous computer experiments, the average bit-stor- 
age is actually 40% smaller than 2 K. Hence the EEA is 
executable if necessary by a custom-built chip with small 
memory, [11]. This property of the Enhanced-Euclid 
algorithm is especially important for a potential imple-
mentation of encryption if integrated-circuit memory is 
limited, (smart cards, PC cards, cell phones, wearable 
computers etc.). 

In the analysis provided above, it is not considered 
storage space, required for delimiters separating the quo-
tients in the stack. One way to resolve the retrieval prob-
lem is to use a dynamic prefix coding for the quotients 
[12,13]. Since in the prefix coding there are no two codes 
such that one code is a prefix of another code, the quo-
tients can be retrieved from the stack without delimiters. 
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Appendix 

1     (A.1) 

2
1   

1                       (A.3) 

Diagrams (A.1)-(A.
gl

 

2
5 2 3 2E E E E E 

3) show that 2
2 1E E  delivers the 

 
2 2

5 1 4 1 3 1 1 2 1 2 ;E E E E E E E E E E E    obal minimum. 
2

5 3 2 1 2 2 1 2 2 ;E E E E E E E E E E        (A.2) 
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