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Abstract

In certain computational systems the amount of space required to execute an algorithm is even more restric-
tive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular
multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound
for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of num-
bers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the
worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its
implementation as a subroutine in communication-secure wireless devices.

Keywords: Modular Multiplicative Inverse, Public-Key Encryption, Space Complexity, Tight Upper Bound,

Extended Euclid Algorithm, Prefix Coding, Enhanced Euclid Algorithm, Custom-Built Circuits

1. Algorithm for Modulo Multiplicative
Inverse

The operation of modular multiplicative inverse is essen-
tial for public-key encryption, modular arithmetic [1] and
for applications based on the Chinese Remainder Theo-
rem [2].

1.1. Introduction

Operation of multiplicative inverse modulo n is a basic
operation in modular arithmetic. A number x is called a
modular multiplicative inverse, (MMI, for short) of p,
modulo p,, [2], if it satisfies equation

p,xmod p, =1. (1.1)

1.2. Enhanced-Euclid Algorithm (EEA)

Consider integer variables L, M, S, t and Boolean vari-
able c;

Assign L:=p,; M=p;; c=0;

Repeat t:=|L/M |[;

S=L-Mt;c=1-c; L=M; M=S; (1.2)
push t {onto the top of the stack}; (1.3)
until eitherS=10r S=0;
if S =0, then ged(p,, p,)=M ; output “MMI does
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not exist”; M =gcd(py, p,)};
elseassign S:=0; M =1;
repeat pop t {from the top of the stack};
L=Mt+S; S=M; M=L; (1.4)
until the stack is empty; output
ifc=0then MMI =L else MMI :=p,-L;
for more details see [3,4].
The algorithm is valid for both cases: for p, > por
P, < P, . In the latter case, assign p, == p, mod p,,.
Validity of the EEA is discussed in [3] and its time
complexity is analyzed in [4]. Although both analysis
and computer experiments demonstrate that the EEA is
faster than the Extended-Euclid algorithm [2], the EEA
requires the storage of stack, {see (1.3)-(1.4)}. The
worst-case space complexity of the EEA is analyzed in
this paper if

Po> Py (1.5)
2. Bit-Storage Required for Stack

2.1. Direct Problem

Let N(p,, p,) be the number of bits required to store
the stack. Find a maximal p, such that for all values of
p, satisfying (1.5) the EEA does not require more than
s bits for storage of the stack. Consider optimization
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problems:
Q(s,pp) = max N(p, p)<s, (2.1)

2<p<po

and let
q(s)=max, Q(s,py)- (2.2)

2.2. Dual Problem

In order to analyze space complexity of the EEA let’s
consider a sequence {n,,n,,---,n,,---} generated in ac-
cordance with the following rules: let a>b>1;

N, =0qn, +n_,,whereall g =1 and n, =a;
n,:=b; and for all k>1, n, are integers. Then for
every k>1

(nk+l'nk):(nk’nkl){qf éj [5]. (2.3)

Therefore, for every integer r>1

an)-EolL(Y g e

and nrﬂ:(a,b)HL_l[qlk 3](1,0)1

Suppose that a memory that stores an array of quo-
tients {q,,0,,....0,.5,q,} has restricted capacity. For in-
stance, suppose that it cannot store more than s bits.
Consider the following optimization problem:

Find

n(r,s):=_min }(a,b)HL_l(qlk ;j(l,O)T (2.5)

{o k=1,..,r

under constraint
> | log, 2q, | =s, (2.6)
k=1

where integers a, b, r and s in (2.5) and (2.6) are speci-
fied parameters.

Here |log, 2q, | is the number of bits required for
storing quotient q,, and (2.6) describes the constraint
that the total allowed bit-storage for r quotients is equal
tos. Let

n(s):= mrin n(r,s). 2.7

Then for every integer s

q(s)=n(s) (22). (2.8)
3. Properties of Optimal Quotients

Consider {q,,d,,"-~0,.0,} (2.3).
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Then the following properties hold:

Proposition 3.1: All optimal g, must be exact pow-
ers of two.

Proof: Let’s assume that the theorem is incorrect. This
implies that for the same s, the value of n(s) would be
larger.

Indeed, consider for all k >1

g, =2% <q, <2"".

Then for all k>1 the inequality n, <n, holds. Here
n,:=h; n:=a andall n, are generated itera- tively as
N =0, , + N, . At the same time both arrays of
quotients require the same size of bit storage.

Let E,:= 1 {identity matrix} and forall i>1

(2t 1
E, ._( ) OJ. (3.1)

Then (2.5) may be rewritten as

. r T
n(r,s)= gr”uqr:(a,b)l_[k:1 E, (L0) . (3.2)
Proposition 3.2: Since a spectral radius of matrix E?
is larger than the spectral radius of matrix E,, the se-
quence {n,---,n,,---}, generated by an array of length
2m with all ¢, = 1, grows faster than the sequence gener-
ated by an array of length m with all g, = 2. Yet both ar-
rays require the same storage. Hence all g, = 2 generate
smaller n,,, than the unary array of the quotients. This
observation provides a simple way to find an upper bound
h(s) for n(s). Indeed, h(0)=2, h(2)=5, and for
all s>2

h(2s)=2h(2s-2)+h(2s-4). (3.3)
Remark 3.1: Let H(s):=h(2s);then H(0)=2;
H(1)=5H(s)=2H(s-1)+H(s-2). (34)

Representing the upper bound H(s) as
H(s)=ap’ + o, [5,6], and using (3.4), we derive that

h(s):(l+3ﬁ)(@)s/4+o(s). (3.5)

For s =40, h(40) = 93,222,358, while the exact up-
per bound n(40) = 80,198,051 {see (8.3) below}, i.e.,
the relative difference between h(40) and n(40) is
more than 16%. However, for larger values of s this dif-
ference is significantly increasing, namely

!Lnjoh(s)/n(s):w.

Let us now consider properties of control variables
that help to determine their optimal values.
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4. Diagonally Decreasing Matrices

4.1. Definition

R={r,}  isadiagonally decreasing matrix, {or D-ma-

trix for short}, if r, >rn, for every i<k and j<I.
Hence forevery k>1, E, are D-matrices.

4.2. Properties of D-Matrices

1) A product of D-matrices is a D-matrix;
2) Transposed D-matrix is also a D-matrix.
Let us consider the function

F(X,uw)=(Lu)X(Lw) ,  (41)

where X >0 is a two-dimensional square matrix (all
further inequalities involving matrices are to be taken
entry-wise), u>0and w>0.

Remark4.1: For the sake of simplicity in forthcoming
inequalities we use (wherever it is necessary) a normali-
zation

(a,b)X (c,d)" =ac(Lb/a)X (L,d/c)" =acF (X,u,w),

(4.2)
where u:=b/a; w:=d/c.
Let F(X)=F(X,..). (4.3)
Itis easy to verify thatif X >Y >0, then
F(X)2F(Y). (4.4)
For example, since EZ > E, , then
F(E?)=F(E,). (4.5)
5. Decomposition
Proposition 5.1: Let
O<u<l O0<wx<1l; (5.2)
then the inequality
F(Ecn)-F(EE,)>0 (5.2)
holds if

k>, m>1, k+m=>3, and w=0. (5.3)
Proof: Consider
F(Exom)—F(EEpn)=(LU)(Errn —EE,)(LW) >0
(5.4)
and find under what conditions it holds.
Let x:=2"; y:=2""; then
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2 1 1 1
Ek+m - Ek Em = Y - X y
1 0 1 0)\1 O
(xy 1 1 x
1 0) ly 1)
Therefore, definitions (4.1) and (4.3), and Equations
(5.4) and (5.5) imply the following inequality:

(5.5)

(2"‘1 —u)(Zm‘l —W) >(1-u)(1-w)+uw. (5.6)

On the other hand, if (5.6) holds, then (4.4) also holds.
In addition, it is sufficient to observe that (5.6) indeed
holds if k>1;, m>1 k+m=>3, andw=0.

However, (5.6) does not hold if k =m = 1.

Q.E.D.

6. Transposition
Proposition 6.1: The inequality
(Lu)(E.E, —E,E, )(Lw) >0 (6.1)

holds if (k >mandw>u)
or if (k<mandw<u). (6.2)

1
Proof: Let x:=2"; y=2"" X = X and
10
1
Y = y .
10
Thus,

[0 x-y)_ B 0 1
XY—YX_(y_X 0 J_(x y)(_1 Oj' (6.3)

Therefore, inequality

(Lu)(XY =YX)(Lw) >0 (6.4)

holds if (x=y)(w-u)>0. (6.5)
Hence, inequality (6.1) can be rewritten as

<2m’1—2k’1)(u—w)>0; (6.6)

and (6.6) holds if
sign(m—k) =sign(u—w). Q.E.D.

In addition, inequality (6.6) implies that if w = 0, then
inequality (6.1) holds if k <m.
Let

E=EE;E(Lv) =4(Lv) (6.7)

where A is the largest eigenvalue of E.
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3 2
Since E :[1 1) >0, i.e., with all positive elements,

then by Perron-Frobenius Theorem [7] its largest eigen-
value 1>0 with positive corresponding eigenvector
(Lv),where v>0 (6.7).

Indeed, 1=2++/3 and v= (\/5—1)/2 .

7. Optimal Control Variables
7.1.Casess=0,1,2

It is easy to verify that n(0)=2;n(1)=3. To find n(2)
we must compare two cases only. From the Decomposi-
tion Theorem it follows that (a,b)E’ >(a,b)E, for all
a>0andb>0.

Hence, g/ =2;and, if (a,b)=(21), then n(2)=5.

7.2.Cases=3
Let X:=E; and E:=E,FE .
Then
(2,1)E;(1,0)" >(2,1)EE, (L0)" >(2,1)E,E, (1,0)'

(7.1)
or after normalization
(LY2)E;(L0) >(LY2)EE, (10)
>(LY2)E,E (1,0)  (7.2)

=(L1/2)E(1,0)

Here u=1/2 and w = 0. Since in (7.2) w = 0, then
the left-most inequality follows from the Decomposition
{Proposition5.1} and the right-most inequality follows
from the Transposition {Proposition6.1}. Thus, the op-
timal control variables are

o =2, g; =1and n(3)=7.

7.3.Cases=4

The following scheme shows that there are two local
minima. Indeed, consider X :=E, . Using the Decom-
position and Transposition Theorems we can decrease
the value of function F (X ). This procedure leads to two
local minima: Let A= B means that F(A)>F(B),
i.e.,
E,E} «E,E, « E, « EE, < E/E,
U U U U U
EZ2 E1E2 El EZZ El EZ El E22

Direct comparison implies that
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F(E;)>F (EE,E,)=F(EE). (7.3)
Hence the optimal control variables are equal
g = gs =1 and g; =2,
Thus n(4)=11.

7.4.Cases=5

Consider X = E; . Systematically applying decomposi-
tion and transposition, it is possible to demonstrate, that
there are two local minima: E,EE, and E,E only
(6.7). {see the diagram below}. The direct comparison
shows that E,E delivers the global minimum.
Proposition 7.1: Let p, and p, be a pair that re-

quires s bits of storage; L:=(2,1); R = (1,0)T; s=3m+j;
0<j<2 and

S =s. (7.4)
{all k}
Then
H _ m
{QIIL]} Lli—[ EqR=LE;E"R. (7.5)

Proof: (by induction over m).

(1) m=0: for j=1and j = 2 we proved in the Subsec-
tion6.1that LE;R isthe minimum.

For j = 3 we proved in (6.1)-(6.2) that
L(E;-EE,)R >0, and that L(E,E,-E,E,)E"R>0,
i.e., LER isthe minimum.

(2) Let for m=0,1,--, k LEjEmR be the minimum
if j =0, 1, 2, {E, =1, (3.1)} and correspondingly
E,;E™ be the optimal control strategy.

(3) Let us insert matrix E, into LE,E“R and prove
that the following two inequalities hold:

LE,E*(E,-EE,)R>0 (7.6)
and
LE,E(EE,-E,E)R>0.  (7.7)
Let LE; :=(a,;,by;),and forall m

(20 Dry )= (2055, ) E"- (7.8)

Here L, E;, EandR are D-matrices, {see the Defi-
nition 3.1}. Hence LE; and LEjEk are also D-ma-
trices, {as products of D-matrices}, i.e., a; >b; >0 for
alli=o0,1,2,

Dividing the inequalities (7.6) and (7.7) by a;, we
can respectively rewrite them as

(Luy)(E;-EE,)(10)" >0 (7.9)

and as
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(Lug)(EE,-E,E)(L0) >0  (7.10)

Then inequality (7.9) holds by the Decomposition
Theorem because w = 0, 0<uy, <1, and u, =b;/a, .
On the other hand, inequality (6.10) holds by the Trans-
position Theorem because u,; >w=0. Therefore
LE,E*(E,E,)R = LE,E*ER = LE,E*"'R is the minimum
and E; E* is the optimal control strategy.

Q.E.D.

Remark 7.1: Another (more tedious) way to prove the
Theorem is to consider an induction over m and j. Firstly,
we make an assumption that for all m=0,1,--, k and
forallj=0,1,2 LE;E"R isthe minimumand E;E"
is the optimal strategy. Then we prove that for every

1<i<m
F(E,E'EE™)>F(EEEE"™)> > F(AE").
(7.11)
Here E,=1; A=E,;, ifj=0orj=1;and A=E
if j = 2. The application of all transpositions is based on
the following propositions (provided here without

proofs):
Proposition 7.2: forall j=0, 1, 2 and for all i=1,2,--

Upj >Upj > > Uy > >V > W >0 > W > Wy =0,

(7.12)
if

Uy >v=(\/§—1)/2.

Here all u; are defined in (4.2) and (7.8), and v satis-
fies the condition (LV)E™ = A(Lv), i.e., v is the second
component of a normalized eigenvector of matrix E,
corresponding to the largest eigenvalue A of E, [7].
Direct computation shows that indeed the inequalities
Uy; >V are satisfied for every j =0, 1, 2.

Therefore,

(7.13)

F(E,E'EE™)>F(EETEE™™)  (7.14)

holds for every i=1,---,m.

8. Optimal Control Variables

Let n(s) be aminimal p, that requires no more than
s bits of storage for the stack. The minimal values n(s)
are generated by the following optimal quotients ¢ :

1) If s = 3m, then for every k >1

o =1+kmod2; (8.1)

2) If s=3m+r,and r = 1,2, then ¢’ =r, and for
every k>2
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o =2-kmod2. (8.2)
Examples: n(0)=2; n(1)=3; n(2)=5; n(3)=7;

n(4)=11 n(5)=17; n(6)=26; n(7)=41 n(8)=63;
n(9)=97; n(10)=153; n(11)=235; n(12)=362;
n(13)=571%; n(14)=877; n(15)=1412;
n(20)=12,86%:; n(40) = 80,198, 051. (83)

9. Telescopic Relations for Tight Upper
Bound n(s)
Sincefori=0,1,2
n(3m+i)=(2,1)EE™(1,0)", (9.1)

let us find telescopic relations for n(s) in the following
form [7]:

n(Bm+i+2)=xn(3m+i+1)+yn(3m+1) (9.2)
where x, and y, must satisfy equations
(21)(A., — %A, - V,A)EE"(10) =0;  (9.3)
and where
E.i=01,

A=1{E i
EE, i

2
3. (9.4)
4

From these equations we find all x, and vy, and es-
tablish the following telescopic relations for n(s):

4n(3m)=-n(3m-1)+11n(3m-2); (9.5)
11n(3m+1)=18n(3m)-n(3m-1); (9.6)
n(3m+2)=-n(3m+1)+4n(3m) [6]. (9.7)
Therefore
n(3m-2)=[n(3m)+n(3m-3)]/3;  (9.8)
n(3m-1)=[-n(3m)+11n(3m-3)]/3; (9.9)
and finally, n(3m)=[n(3m+3)+n(3m-3)]/4 or

n(3m+3)=4n(3m)-n(3m-3). (9.10)

10. Closed-Form Expressions for n(s)

Direct substitution shows that
n(3m)= {(2+\/§)m+1 +(2 —ﬁ)mﬂ}/z . (10.1)

satisfies (9.10) for every integer m>0.
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Using (9.8), (9.9) and (10.1), we can find closed-form
expressions for

n(3m-2)
- [(2+8) (1+138) (28] (1-/45) |
(10.2)

and for
n(3m-1)

-[(2+VB)" (3-43B) +(2-+3)" (3+35) |/

(10.3)
The tight-upper bound on the required bit-storage is
deducible from the following
Proposition 10.1: The bit-storage required by EEA for
storage of the stack in the worst case satisfies equation:
max N (py, p,)= 3(Iogz+J§ po)[1+o( )], (10.4)

2<p1<po
Proof: Since ‘2—\/§‘<1, then definitions (2.1)-(2.2)
and formulas (10.1)-(10.3) imply (10.4).

11. Asymptotic Rate of Growth/Bit

Let s=3m+i; represent n(s) inaform

n(3m+i)=au®™" +o(m) (11.1)

The asymptotic rate of growth u equals to r(E),
where r(E) is aspectral radius of matrix E, [8-10], i.e.,
2

1-4

the largest root of equation

Since 4, =2++/3, then

u=3%2++/3=15511335  (11.2)

This observation independently verifies the stronger
results of (10.1)-(10.3). Indeed, we can find the asymp-
totic rate of growth/bit by taking into account that

(2—«/§)m —0 in (10.1)-(10.3) for large m. Finally,
since Y1++/2 >3/2++/3, then the tight upper bound

n(s) grows slower than h(s) (3.5).

Main Theorem: Let N(p,) denote the maximal
number of bits required to store all quotients in the stack

if the modulus equals p,; and let u:= Y243 .0f
D, € [aousm U™ _1], then N (p, ) <3m;

P, € [alum”,azum*2 —1] then N (p,) <3m +1;
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P € [a2u3m+2,a0u3(m*l) —1] then N (p, ) <3m + 2
(11.3)

where a, =1/2; a :(3—1/«/5)/2; and a, =(1+]/«/§)/2.

Proof follows from (11.1) and (10.1)-(10.4).
12. Conclusions

As it follows from the observed results, Enhanced-Euclid
algorithm requires very small bit-storage for its execu-
tion. This storage does not exceed a 2K-bit level for pub-
lic-key encryption algorithms, dealing with numbers
p, and p, of range (10'°,10°°). As it is demonstrated
in numerous computer experiments, the average bit-stor-
age is actually 40% smaller than 2 K. Hence the EEA is
executable if necessary by a custom-built chip with small
memory, [11]. This property of the Enhanced-Euclid
algorithm is especially important for a potential imple-
mentation of encryption if integrated-circuit memory is
limited, (smart cards, PC cards, cell phones, wearable
computers etc.).

In the analysis provided above, it is not considered
storage space, required for delimiters separating the quo-
tients in the stack. One way to resolve the retrieval prob-
lem is to use a dynamic prefix coding for the quotients
[12,13]. Since in the prefix coding there are no two codes
such that one code is a prefix of another code, the quo-
tients can be retrieved from the stack without delimiters.
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