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Abstract 
 
A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different 
diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is 
based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the 
complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential 
equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approxi-
mate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for 
homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These 
approximate results are compared with the available analytical results and are found to be in good agreement. 
 
Keywords: Non-Linear Reaction/Diffusion Equation, Homotopy Perturbation Method, CE Mechanism,  

Reduction of Order, Spherical Electrodes 

1. Introduction 
 
Microelectrodes are of great practical interest for quanti-
tative in vivo measurements, e.g. of oxygen tension in 
living tissues [1-3], because electrodes employed in vivo 
should be smaller than the unit size of the tissue of inter-
est. Microelectrodes having the geometry of a hemi-
sphere resting on an insulating plane are difficult to fab-
ricate, but their behavior is easily predicted [4]. They 
also have advantages in electrochemical measurements 
of molten salts with high temperature [5]. Microelec-
trodes of many shapes have been described [6]. Micro-
electrodes of simple shapes are experimentally preferable 
because they are more easily fabricated and generally 
conformed to simpler voltammetric relationships. Those 
shapes with restricted size in all superficial dimensions 
are of special interest because many of these reach true 
steady-state under diffusion control in a semi infinite 
medium [7]. Nevertheless, there is interest in microelec-
trodes of more complicated shapes, only because the 
shapes of small experimental electrodes may not always 
be quite as simple as their fabricators intended. Moreover, 
and ironically, complex shapes may sometimes be more 
easily modeled than simpler ones [8]. However, many 

applications of microelectrodes of different shapes are 
impeded by lack of adequate theoretical description of 
their behavior. 

As far back as 1984, Fleischmann et al. [9,10] used 
microdisc electrodes to determine the rate constant of 
coupled homogeneous reactions (CE, EC’, ECE, and 
DISPI mechanisms). Fleischmann et al. [9] obtained the 
steady-state analytical expression of the concentration of 
the species HA and H by assuming the concentration of 
the specie A is constant. Also measurement of the cur-
rent at microelectrodes is one of the easiest and yet most 
powerful electrochemical methods for quantitative me-
chanistic investigations. The use of microelectrodes for 
kinetic studies has recently been reviewed [11] and the 
feasibility demonstrated of accessing nano second time 
scales through the use of fast scan cyclic voltammetry. 
However, these advantages are earned at the expense of 
enhanced theoretical difficulties in solving the reaction 
diffusion equations at these electrodes. Thus it is essen-
tial to have theoretical expressions for non steady state 
currents at such electrodes for all mechanisms. 

The spherical EC’ mechanism was firstly solved by 
Delmastro and Smith [12]. In electrochemical context 
Diao et al. [13] derived the chronoamperometric current 
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at hemispherical electrode for EC’ reaction, whereas 
Galceran’s et al. [14] evaluated shifted de facto expres-
sion and shifted asymptotic short-time expression for disc 
electrodes using Danckwerts relation. Rajendran et al. [15] 
derived an accurate polynomial expression for transient 
current at disc electrode for an EC’ reaction. More re-
cently, Molina and coworkers have derived the rigorous 
analytical solution for EC’, CE, catalytic processes at 
spherical electrodes [16]. Fleischmann et al. [17] dem-
onstrate that Neumann’s integral theorem can be used to 
numerically simulate CE mechanism at a disc electrode. 
Dayton et al. [18] also derived the spherical response 
using Neumann’s integral theorem. In this literature 
steady-state limiting current is discussed in [19]  

In general, the characterization of subsequent homo-
geneous reactions involves the elucidations of the me-
chanism of reaction, as well as the determination of the 
rate constants. Earlier, the steady-state analytical expres-
sions of the concentrations and current at microdisc elec-
trodes in the case of first order EC’ and CE reactions 
were calculated [9]. However, to the best of our knowl-
edge, till date there was no rigorous approximate solu-
tions for the kinetic of CE reaction schemes under first or 
pseudo-first order conditions with different diffusion 
coefficients at spherical electrodes under non-steady- 
state conditions for all possible values of reactio- 
n/diffusion parameters E  ,  S  , 1S , 1E , 2S , ,1  

2  and 2E  have been reported. The purpose of this 
communication is to derive approximate analytical ex-
pressions for the non-steady-state concentrations and 
current at spherical electrodes for all possible values of 
parameters using Homotopy perturbation method. 
 
2. Mathematical Formulation of the   

Problems 
 
At a range of Pt microelectrodes, the electroreduction of 
acetic acid, a weak acid, is strutinized by as in a usual 
CE reaction scheme. This reaction is known to proceed 
via the following reaction sequence [9]: 
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where 1  and 2  are the rate constants for the forward 
and back reactiuons respectively and are related to an-
other by the known equilibrium constant for the acid 
dissociation [9]. The initial boundary value problems for 
different diffusion coefficients ( ) can be 
written in the following forms [9]: 
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where HA  are the diffusion coefficient of 
the species , 1  and 2  are the rate 
constant for the forward and back reactions respectively 
and HA H A  are the concentration of the species 
HA, H and A. These equations are solved for the follow-
ing initial and boundary conditions: 

H A,   and D D D
HA, H and A

,  and c c c

k k

H H HA HA A A0 ; ,   ,  t c c c c c c              (5) 

H HA A;  0,   0,  0Sr r c dc dr dc dr     

Ac

   (6) 

H H HA HA A ;  ,   ,  r c c c c c              (7) 

where S  is the radius of the spherical electrode. We 
introduce the following set of dimensionless variables: 
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where ,   u ,v ,w   and   represent the dimen-
sionless concentrations and dimensionless radial distance 
and dimensionless time parameters respectively. 

2

2

2
E S

u u u
u v 

  
  

   
 

w           (9) 

2
1

1 12

2
E S

v v v
u v


 

  
  

   
  1 w      (10) 

2
2

2 22

2
E S

w w w
u v


 

  
  

   
  2 w     (11) 

where E , S , 1E , 1S , 2E  and 2S  are the di-
mensionless reaction/diffusion parameters and 1 , 2  
are dimensionless diffusion coefficients. The initial and 
boundary conditions are represented as follows: 

0,  1;   1;   1u v w                  (12) 

   1,  0;  0;  0v u w               (13) 

k c c  (2) 
,  1;  1;  1u v w                  (14) 

The dimensionless current at the microdisc electrode 

Copyright © 2011 SciRes.                                                                                AJAC 



A. ESWARI  ET  AL. 95 
 
can be given as follows: 

 H 1
=S SI nFAD r dv d 


          (15) 

3. Analytical Expression of Concentrations 
and Current Using HPM 

Recently, many authors have applied the HPM to various 
problems and demonstrated the efficiency of the HPM 
for handling non-linear structures and solving various 
physics and engineering problems [20-25]. This method 
is a combination of homotopy in topology and classic 
perturbation techniques. The set of expressions presented 
in Equations (9)-(14) defines the initial and boundary 
value problem. The homotopy perturbation method [26-32] 
is used to give the approximate solutions of coupled 
non-linear reaction/diffusion Equations (9) to (11). The 
dimensionless reaction diffusion parameters E , S , 

1E , 1S , 2E  and 2S  are related to one another, 
since the bulk solution is at equilibrium in the non-steady 
state. Using HPM (see Appendix A and B), we can obtain 
the following solutions to the Equations (9) to (11). 
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The Equations (16)-(18) satisfies the boundary condi-
tions (12) to (14). These equations represent the new 
approximate dimensionless solution for the concentration 
profiles for all possible values of parameters E , S , 

1E , 1S , 2E , 2S , 1  and 2 . 
e

From Eq
dim nsionless curr

is as follows: 

uations
ent, w

 (15) 
and (17), we can obtain the hich 

H H
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Equation (19) represents the new approximate expres-
sio

Fleischm n et al.  h ri

s: 

n for the current for small and medium of parameters. 

4. Comparison with Fleischmann Work [9] 

an [9] ave de ved the analytical ex-
pressions of dimensionless steady-state concentrations u 
and v as follow
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 not arrived upon in the third specie A. 
The normalized current is given by 

Fleischmann assumed that the concentration profiles 
of w is constant. So the definite solution for concentra-
tion profiles of w is
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When 1 1E S   the above equation becomes 

   1 1

1
1 exp 1 E Eu 1    




         
 (23) 

    1 1

1
1 exp 1 E Ev     


         

   (24) 

The normalized current is given by 

H H 11S S E EI r nFD AC 1            (25) 

Previously, mathematical expressions pertaining to 
steady-state analytical expres trations 
an nt at mic ated by 
Fleischmann et al. [9]. In addition, we have also pre-

sions of the concen
d curre rodisc electrodes were calcul
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sented an approximate solution for the non-steady state 
concentrations and current. 

5. Discussions 

Equations (16)-(18) are the new and simple approximate 
so isomers calculated 
using Homotopy perturbation method for th
boundary conditions Equations (12)-(14). 
approxim

lution of the concentrations of the 
e initial and 
The closed 

ate solution of current is represented by the 
Equation (19). The dimensionless concentration profiles 
of u versus dimensionless distance   are expressed in 
Figures 1(a)-(d). From these figures, we can infer that 
the value of the concentration decreases when   and 
distance   increases when 1E  . Moreover when 

1E   and 1  , the conce ains the steady- 
res 2(a)-(d alized c n-
isomers v us values  pa-

ntr
), the 
fo

ation att
norm

r vario
state value. In Figu
tration profiles of 

once
of

rameters are plotted. From these figures, it is inferred 
that the concentration v increases abruptly and reaches 
the steady-state value when 5  . In Figures 1(a)-(d) 

a)-(d), values of dimensionless concentrations 
u and v for various values of  

and 2(  the 

E ,  E  and   and for 

1 1   are reported and a satisfactory agreement with the 
available [9] estimates of Fleischmann et al. is noticed 
when   is large. Figures 3(a)-(d) show the normalized 
dimensional concentration pro f w in file o   space cal-
culated using Equation (18). The plot was constructed for 
various values 2 0.1,  1E    1 1and   . Fr m these 

s it is confirmed that the value of the concentration 
profile of w increases when 

o
figure

  and 2E  increases. Al-
so from the Figures 1(a)-(d) and 2(a)-(d), it is evident 
that the concentration of species HA and H increases 
when the radius of the electrode ( Sr ) decreases. There-
fore, the use of the f the sm dius is clearly 
advangeous for the study of CE reaction mechanism. The 
concentration of specie A de eases w n the radius of 
the electrode decreases. It reaches the steady state value 
when 1

 electrode o

c

all 

h

r

e

a

r

  . The dimensionless current log  versus   
for various values of 1E  is given in Figure 4. From 
these figure, it is evident that the value of the current 

 
  

decreases abruptly and reaches the steady-state value. 
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Figure 1. Normalized concentration u at microelectrode. The concentrations were computed using Equation (16) for various 
values of   and for some fixed small value of 1 E  when the reaction/diffusion parameter and dimensionless diffusion coef-
ficient (a) ,  10.1 0.01 E    (b) ,  10.1 0.5 E    (c) 1 ,  11 0.0 E    (d) 5,  11 0. E   . The key to the graph: ( __ ) 
represen +ts Equation (16) and ( ) represents Equation (23) [9]. 
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Figure 2. Normalized concen r various 
values of 
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Figure 3. Normalized concentration w at microelectrode. The concentrations were computed using Equation (18) for various 
values of   
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and for some fixed value of the reaction/diffusion parameter and dimensionless diffusion coefficient (a) 
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6. Conclusions 
 
The time dependent non-linear reaction/diffusion equa-
tions for spherical microelectrodes for CE mechanism 
has been formulated and solved using HPM. The primary 
result of this work is simple approximate calculation of 
concentration profiles and current for all values of fun-
damental parameters. We have presented approximate 
solutions corresponding to the species HA, H and A i
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ppendix A: Solution of the Equations (9) to 
1) Using Homotopy Perturbation Method 

 this Appendix, we indicate how Equations (16) to (18) 
 this paper are derived. To find the solution of Equa-
ons (9) to (11) we first construct a Homotopy as fol-
ws: 
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and the initial approximations are as follows: 

0 0 00;  1;  0;  1u v w                     (A4) 

 0 0 01;  0;  0,  0v du d dw d          (A5) 

0 0 0;  1;  0;  1u v w                   (A6) 

0;  0;  0;  0i i iu v w                     (A7) 

   1;  0;  0,  0i i iv du d dw d         (A8) 

;  0;  0;  0      1, 2,i i iu v w i          (A9) 

and 
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Substituting Equation (A10) into Equations (A1) and 
(A2) and (A3) and arranging the coefficients of powers 
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Subjecting Equations (A11) to (A16) to Laplace 
transformation with respect to  results in 
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Now the initial and boundary conditions become 

0 0 00;  1;  0;  1u v w                     (A23) 

   0 0 01;  0;  0,  0v du d dw d         (A24) 

0 0 0;  1 ;  1 ;  1u s v s w s               (A25) 
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    0idw d1;   0;  0,  i iv du d       (A27) 

;  0;  0;  0      1, 2,i i iu v w i            (A28) 

where s is the Laplace variable and an overbar ind
a Laplace-t
to 

icates 
ransformed quantity. Solving equations (A17) 

(A22) using reduction of order (see Appendix-B) for 
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 initial and 
boundary conditions (A26) to (A28), we can find the 
following results 

solving the Equation (A20), and using the
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After putting Equations (A29) and (A30) into Equa-
tion (A35) and Equations (A31) and (A32) into Equation 
(A36) and Equations (A33) and (A34) into Eq
(A37). Using inverse Laplace transform [33], the final 
results can be described in Equations (16) to (18) in the 
text. The remaining components of  and 
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According to the HPM, we can conclude that 
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uation 

 nu x  nv x  
 is deter-be completely determined such th term

mined by the previous term. 
 

Appendix B 
 
In this Appendix, we derive the solution of Equation 
(A20) by using reduction of order. To illustrate the basic 
concepts of reduction of order, we consider the equation 

at each 
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where P, Q, R are function of r. Equation (A20) can be 
lified to 
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Substituting the value of P in the above Equation (A7) 
become 
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Integrating Equation (B9) twice, we obtain 
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ing the boundary conditions Equations (A27) and 
), we can obtain the value of the constants A and B. 

Substituting the value of the constants A 
Equation (B11) we obtain the Equation (A
we can solve the other differential Equations (A17), 
(A  and 
or
 
Appendix C 
 

N



Us
(A28

and B in the 
30). Similarly 

18), (A19), (A21) (A22) using the reduction of 
der method. 

omenclature 

Symbols 

HA

Hc  Concentration of the species H (mole

c  Concentration of the species HA 

cm–3) 

Concentration of the spec

Bulk concentration of the species HA 
(molecm–3) 

Bulk concentration of the species H 
–3

(molecm–3) 

(molecm–3) 

Ac  ies A (molecm–3) 

HAc  

Hc  
(molecm ) 

Bulk concentration of the species A 
Ac  

HAD  Diffusion coefficient of the species HA (cm2sec–1) 

HD  Diffusion coefficient of the species H (cm2sec–1) 

AD  Diffusion coefficient of the species A (cm2sec–1) 

D Diffusion coefficient (cm2sec–1) 

R Radial distance(cm) 

e (s) 

Rate constant for the forward reactions (cm3/molesec) 

r 

u, v, w s concentrations (dimensionless) 

T Tim

1k
 

2k
 

Rate constant for the backward reactions 
3(cm /molesec) 

Sr  
Radius of spherical electrode (cm) 

Distance in the radial direction (cm) 

Dimensionles

  Dimensionless radial distance (dimensionless) 

  Dimensionless time (dimensionless) 

SI  Current density at a sphere (ampere/cm2) 

A 

F Faraday constant (Cmole–1) 

n 

Greek s b

Area of the spherical electrode (cm2) 

Number of the electron (dimensionless) 

ym ols 

1  Dimensionless diffusion coefficient 
(dimensionless) 

2  Dimensionless diffusion coefficient 
(dimensionless) 

1 1

2 2

,  ,

,  ,

,  

E S

E S

E S

 
 
 

Dimensionless reaction/diffusion parameters 
(dimensionless) 

 

 


