Model Predictive Control Circuit of the Current Source Matrix Converter

Abstract

In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.

Share and Cite:

Tadra, G. , Fedyczak, Z. and Szcześniak, P. (2015) Model Predictive Control Circuit of the Current Source Matrix Converter. Journal of Power and Energy Engineering, 3, 136-145. doi: 10.4236/jpee.2015.34020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Venturini, M. and Alesina, A. (1980) The Generalized Transformer: A New Bidirectional Sinusoidal Waveform Frequency Converter with Continuously Adjustable Input Power Factor. Proceedings of the IEEE Power Electronics Specialists Conference, PESC’80, Atlanta, 16-20 June 1980, 242-252.
[2] Ziogas, P.D., Khan, S.I. and Rashid, M.H. (1986) Analysis and Design of Forced Commutated Cycloconverter Structures with Improved Transfer Characteristics. IEEE Transactions on Industrial Electronics, IE-33, 271-280. http://dx.doi.org/10.1109/TIE.1986.350233
[3] Huber, L. and Borojevic, D. (1989) Space Vector Modulator for Forced Commutated Cycloconverters. Conference Record of the 1989 IEEE Industry Applications Society Annual Meeting, San Diego, 1-5 October 1989, 871-876.
[4] Casadei, D., Grandi, G., Sierra, G. and Tani, A. (1993) Space Vector Control of Matrix Converters with Unity Input Power Factor and Sinusoidal Input/Output Waveforms. Fifth European Conference on Power Electronics and Applications, Brighton, 13-16 September 1993, 170-175, Vol. 7.
[5] Wheeler, P.W., Rodriguez, J., Clare, J.C., Empringham, L. and Weinstein, A. (2002) Matrix Converters?: A Technology Review. IEEE Transactions on Industrial Electronics, 49, 276-288. http://dx.doi.org/10.1109/41.993260
[6] Klumpner, C. and Pitic, C. (2008) Hybrid Matrix Converter Topologies: An Exploration of Benefits. Power Electronics Specialists Conference PESC’08, Rhodos, 15-19 June 2008, 2-8.
[7] Wijekoon, T., Klumpner, C. and Wheeler, P. (2006) Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio. Applied Power Electronics Conference APEC’06, Dallas, 19-23 March 2006, 1478-1484.
[8] Fedyczak, Z., Szcze?niak, P. and Korotyeyev, I. (2008) Generation of Matrix-Reactance Frequency Converters Based on Unipolar PWM AC Matrix-Reactance Choppers. Power Electronics Specialists Conference PESC’08, Rhodos, 15-19 June 2008, 1821-1827.
[9] Fedyczak, Z., Szcze?niak, P., Kaniewski, J. and Tadra, G. (2009) Implementation of Three-Phase Frequency Converters Based on PWM AC Matrix-Reactance Chopper with Buck-Boost Topology. Power Electronics and Applications EPE’09, Barcelona, 8-10 September 2009, 1-10.
[10] Szcze?niak, P. (2013) Three-Phase AC-AC Power Converters Based on Matrix Converter Topology. Springer. http://dx.doi.org/10.1007/978-1-4471-4896-8
[11] Itoh, J., Koiwa, K. and Kato, K. (2010) Input Current Stabilization Control of a Matrix Converter with Boost-Up Functionality. International Power Electronics Conference IPEC’10, Sapporo, 21-24 June 2010, 2708-2714.
[12] Kwon, W.H. and Cho, G.H. (1993) Analyses of Static and Dynamic Characteristics of Practical Step-Up Nine-Switch Matrix Convertor. IEE Proceedings B Electric Power Applications, 140, 139-146.
[13] Nikkhajoei, H. (2007) A Current Source Matrix Converter for High-Power Applications. IEEE Power Electronics Specialists Conference PESC’07, Orlando, 17-21 June 2007, 2516-2521.
[14] Fedyczak, Z., Tadra, G. and Klytta, M. (2010) Implementation of the Current Source Matrix Converter with Space Vector Modulation. Power Electronics and Motion Control Conference EPE/PEMC’10, Ohrid, 6-8 September 2010, T2-97-T2-102.
[15] Tadra, G. (2010) Uk?ad sterowania do przekszta?tnika matrycowego pr?du o modulacji wektorowej oraz czterostopniowej strategii komutacji. Przegl?d Elektrotechniczny, No. 6, 159-162.
[16] Vasquez, S., Leon, J.I., Franquelo, L.G., Rodriguez, J., Young, H.A., Marquez, A. and Zanchetta, P. (2014) Model Predictive Control: A Review of Its Applications in Power Electronics. IEEE Industrial Electronics Magazine, 8, 16-31. http://dx.doi.org/10.1109/MIE.2013.2290138
[17] Kouro, S., Cortés, P., Vargas, R., Ammann, U. and Rodríguez, J. (2009) Model Predictive Control—A Simple and Powerful Method to Control Power Converters. IEEE Transactions on Industrial Electronics, 56, 1826-1838. http://dx.doi.org/10.1109/TIE.2008.2008349
[18] Rodríguez, J. and Cortes, P. (2012) Predictive Control of Power Converters and Electrical Drives. John Wiley & Sons Ltd. http://dx.doi.org/10.1002/9781119941446
[19] Rodriguez, J., Rivera, M., Kolar, W. and Wheeler, P.W. (2012) A Review of Control and Modulation Methods for Matrix Converters. IEEE Transactions on Industrial Electronics, 59, 58-70.
[20] Clarke, E. (1964) Circuit Analysis of AC Power Systems. John Wiley & Sons Ltd., New York.
[21] Akagi, H., Watanabe, E.H. and Aredes, M. (2007) Instantaneous Power Theory and Applications to Power Conditioning. Wiley-Interscience, A John Wiley & Sons Inc., New York.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.