Silicon-Basing Ceramizable Composites Containing Long Fibers

Abstract

Ceramization is a phenomenon which assures compactness of polymer-based composites in the case of their thermal degradation caused by open fire or exposure at high temperatures. This phenomenon is based on preventing volatiles of thermal decomposition of silicone rubber from evacuation by creation of ceramic layer. This ceramized structure is composed of mineral filer particles, connected by fluxing agent—glassy phase. The ceramic barrier created during firing is aimed to protect copper wire inside the cable from melting, being additionally strong enough to maintain integrity of electrical circuit. The paper presents experimental data on mechanical properties of silicone rubber composites strengthened additionally with long fibers of different types—aluminosilicate and polyamide (Kevlar) ones. Fibers were introduced into composites in oriented way. Mechanical properties were investigated taking into account fiber orientation anisotropy. Ceramization process of composites was described by observation of morphology and strengthen measurements of samples fired at 1000°C.

Share and Cite:

Pędzich, Z. , Ziąbka, M. , Anyszka, R. and M. Bieliński, D. (2013) Silicon-Basing Ceramizable Composites Containing Long Fibers. Journal of Materials Science and Chemical Engineering, 1, 43-48. doi: 10.4236/msce.2013.15009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Hamdani, C. Longuet, D. Perrin, J.-M. Lopez-Cuesta and F. Ganachaud, “Flame Retardancy of Silicone-Based Materials,” Polymer Degradation and Stability, Vol. 94, 2009, pp. 465-495. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.019
[2] A. B. Morgan, L. L. Chu and J. D. Harris, “A Flammability Performance Comparsion between Synthetic and Natural Clays in Polystyrene Nanocomposites,” Fire and Materials, Vol. 29, 2005, pp. 213-229. http://dx.doi.org/10.1002/fam.881
[3] J. Mansouri, R. P. Burford, Y. B. Cheng and L. Hanu, “Formation of Strong Ceramified Ash from Silicone-Based Composites,” Journal of Materials Science, Vol. 40, 2005, pp. 5741-5749. http://dx.doi.org/10.1007/s10853-005-1427-8
[4] J. Mansouri, R. P. Burford and Y. B. Cheng, “Pyrolysis Behaviour of Silicone-Based Ceramifying Composites,” Materials Science and Engineering A, Vol. 425, 2006, pp. 7-14. http://dx.doi.org/10.1016/j.msea.2006.03.047
[5] L. G. Hanu, G. P. Simon and Y. B. Cheng, “Preferential Orientation of Muscovite in Ceramifiable Silicone Composites,” Materials Science and Engineering A, Vol. 398, 2005, pp. 180-187. http://dx.doi.org/10.1016/j.msea.2005.03.022
[6] Y. Xiong, Q. Shen, F. Chen, G. Luo, K. Yu and L. Zhang, “High Strength Retention and Dimensional Stability of Silicone/Alumina Composite Panel under Fire,” Fire and Materials, Vol. 36, 2012, pp. 254-263. http://dx.doi.org/10.1002/fam.1107
[7] K. Hayashida, S. Tsuge and H. Othani, “Flame Retardant Mechanizm of Polydimethylsiloxane Material Containing Compound Studied by Analytical Pyrolysis Techniques and Alkaline Hydrolysis Gas Chromatography,” Polymer, Vol. 44, 2003, pp. 5611-5616. http://dx.doi.org/10.1016/S0032-3861(03)00622-0
[8] S. Hamdani, C. Longuet, J.-M. Lopez-Cuesta and F. Ganachaud, “Calcium and Aluminium-Based Fillers as Flame-Retardant Additives in Silicone Matrices. I. Blend Preparation and Thermal Properties,” Polymer Degradation and Stability, Vol. 95, 2010, pp. 1911-1919. http://dx.doi.org/10.1016/j.polymdegradstab.2010.04.013
[9] Z. Pedzich and D. M. Bielinski, “Microstructure of Silicone Composites after Ceramization,” Composites, Vol. 10, 2010, pp. 249-254.
[10] Z. Pedzich, D. M. Bielinski, J. Dul, M. Zarzecka-Napierala, “Optimisation of the Ceramic Phase for Ceramizable Silicone Rubber Based Composites,” IOP Conference Series: Materials Science and Engineering, Vol. 18, 2011, Article ID: 202027.
[11] Z. Pedzich, A. Bukanska, D. M. Bieliński, R. Anyszka, J. Dul and G. Parys, “Microstructure Evolution of Silicone Rubber-Based Composites during Ceramization at Different Conditions,” International Journal of Advanced Materials Manufacturing & Characterization, Vol. 1, No. 1, 2012, pp. 29-35.
[12] J. Dul, G. Parys, Z. Pedzich, D. M. Bieliński and R. Anyszka, “Mechanical Properties of Silicone-Based Composites Destined for Wire Covers,” International Journal of Advanced Materials Manufacturing & Characterization, Vol. 1, No. 1, 2012, pp. 29-35.
[13] G. Marosi, A. Márton, P. Anna, G. Bertalan, B. MarosfÖi and A. Szép, “Ceramic Precursor in Flame Retardant Systems,” Polymer Degradation and Stability, Vol. 77, 2002, pp. 259-265. http://dx.doi.org/10.1016/S0141-3910(02)00057-5
[14] J. Mansouri, C. A. Wood, K. Roberts, Y. B. Cheng and R. P. Burford, “Investigation of the Ceramifying Process of Modified Silicone-Silicate Compositions,” Journal of Materials Science, Vol. 42, 2007, pp. 6046-6055. http://dx.doi.org/10.1007/s10853-006-1163-8
[15] L. G. Hanu, G. P. Simon, J. Mansouri, R. P. Burford and Y. B. Cheng, “Development of Polymer-Ceramic Composites for Improved Fire Resistance,” Journal of Materials Processing Technology, Vol. 153-154, 2004, pp. 401-407. http://dx.doi.org/10.1016/j.jmatprotec.2004.04.104
[16] D. M. Bieliński, R. Anyszka, Z. Pedzich and J. Dul, “Ceramizable Silicone Rubber-Based Composites,” International Journal of Advanced Materials Manufacturing & Characterization, Vol. 1, No. 1, 2012, pp. 17-22.
[17] L. G. Hanu, G. P. Simon and Y. B. Cheng, “Thermal Stability and Flammability of Silicone Polymer Composites,” Polymer Degradation and Stability, Vol. 91, 2006, pp. 1373-1379. http://dx.doi.org/10.1016/j.polymdegradstab.2005.07.021
[18] Z. Pedzich, A. Bukanska, D. M. Bieliński, R. Anyszka, J. Dul and G. Parys, “Microstructure Evolution of Silicone Rubber-Based Composites during Ceramization at Different Conditions,” International Journal of Ad-vanced Materials Manufacturing & Characterization, Vol. 1, No. 1, 2012, pp. 29-35.
[19] “Processable Silicone Composite Materials Having High Temperature Resistance,” US Patent 5552466, 03.08.1996.
[20] D. Ariagno, P. Barruel and A. Viale, “Heat-Vulcanisable Organopolysiloxanes, Intended for Coating of Electrical Cables,” European Patent 0,467,800, 1992.
[21] “Flammwidrige Zusammensetzung zur Herstellung von Elektrischen Kabeln mit Isolations-und/oder Funktion-serhalt,” EP 0 708 455 A1, 24.04.1996.
[22] “A Fire Performance Material and Cable including the Material,” WO Patent 2010/097705 A1, 02.09.2010.
[23] P. Branlard, C. George and C. Leuci, “Polyorganosiloxane Compositions Vulcanisable by Hot Process Useful in Particular for Making Electric Wires or Cables,” European Patent 1,238,007, 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.