Performance of Large Area Thin-Film CdTe Detector in Diagnostic X-Ray Imaging

Abstract

Significant advancement in thin-film cadmium telluride (CdTe) deposition techniques in recent years has made this material attractive for the development of low-cost large area detector. Here we evaluate the intrinsic performance of the detector for a range of energies relevant to diagnostic imaging applications, such as fluoroscopy. The input x-ray spectra for a set of tube potentials ranging from 70 to 140 kVp were computed with the tungsten anode spectral model using interpolating polynomials (TASMIP) based on the measured output of our diagnostic x-ray simulator. Frequency-dependent detector performance analysis was conducted through Monte Carlo simulations of energy deposition within the detector. Intrinsic modulation transfer functions (MTF), noise power spectra (NPS), and detective quantum efficiencies (DQE) were computed for a set of CdTe detectors of varying thickness, from 100 to 1000 μm. MTF behavior at higher frequencies was affected by thickness and input energy, NPS increased with film thickness and energy, and the resultant DQE(f) decreased with increasing the input energy, but increased with the thickness of the detector. We found that the optimal thickness of CdTe under diagnostic x-ray beam is in the range of 300 to 600 μm. Physical properties of CdTe, such as the high atomic number and density, used in direct detection configuration, together with the recently established thin-film manufacturing techniques makes this technology a promising photoconductor for large area diagnostic flat panel imaging.

Share and Cite:

D. Shvydka, ,. Jin and E. Parsai, "Performance of Large Area Thin-Film CdTe Detector in Diagnostic X-Ray Imaging," International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol. 2 No. 3, 2013, pp. 98-109. doi: 10.4236/ijmpcero.2013.23014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. Zhao and J. A. Rowlands, “Digital Radiology Using Active Matrix Readout of Amorphous Selenium: Theoretical Analysis of Detective Quantum Efficiency,” Medical Physics, Vol. 24, No. 12, 1997, pp. 1819-1833. doi:10.1118/1.598097
[2] W. Zhao, I. Blevis, S. Germann, J. A. Rowlands, D. Waechtcher and Z. S. Huang, “Digital Radiology Using Active Matrix Readout of Amorphous Selenium: Construction and Evaluation of a Prototype Real-Time Detector,” Medical Physics, Vol. 24, No. 12, 1997, pp. 1834-1843. doi:10.1118/1.598098
[3] D. L. Lee, L. K. Cheung, B. G. Rodricks and G. F. Powell, “Improved Imaging Performance of a 14×17-Inch Direct Radiography System Using Se/TFT Detector,” Proceedings of SPIE, Vol. 3336, 1998, pp. 14-23.
[4] A. Tsukamoto, S. Yamada, T. Tomisaki, M. Tanaka, T. Sakaguchi, K. Suzuki and M. Ikeda, “Development and Evaluation of a Large-Area Selenium-Based Flat-Panel Detector for Real-Time Radiography and Fluoroscopy,” Proceedings of SPIE, Vol. 3659, 1999, pp. 14-23.
[5] L. E. Antonuk, K.-W. Jee, Y. El-Mohri, M. Maolinbay, S. Nassif, X. Rong, Q. Zhao, J. H. Siewerdsen, R. A. Street and K. S. Shah, “Strategies to Improve the Signal and Noise Performance of Active Matrix, Flat-Panel Imagers for Diagnostic X-Ray Applications,” Medical Physics, Vol. 27, No. 2, 2000, pp. 289-306. doi:10.1118/1.598831
[6] H. Du, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su, J. Yamamoto and Y. Wang, “Investigation of Signal Behavior of Polycrystalline HgI2 at Diagnostic Energies of Prototype, Direct Detection, Active Matrix, Flat-Panel Imagers,” Physics in Medicine and Biology, Vol. 53, No. 5, 2008, pp. 1325-1351. doi:10.1088/0031-9155/53/5/011
[7] K. S. Shan, P. R. Bennett, M. Klugerman, L. P. Moy, G. Entine, D. R. Ouimette and R. Aikens, “Lead Iodide Films for X-Ray Imaging,” Proceedings of SPIE, Vol. 3032, 1997, pp. 395-404.
[8] R. A. Streat, J. T. Rahn, S. E. Ready, K. S. Shah, P. R. Bennett, Y. N. Dmitriyev, P. Mei, J. P. Lu, R. B. Apte, J. Ho, K. Van Schuylenbergh, F. Lemmi, J. B. Boyce and P. Nylen, “X-Ray Imaging Using Lead Iodide as a Semiconductor Detector,” Proceedings of SPIE, Vol. 3659, 1999, pp. 36-47.
[9] G. Zentai, L. Partain, R. Pavlyuchkova, G. Virshup, A. Zuck, L. Melekhov, O. Dagan, A. Vilensky and H. Gilboa, “Large Area Mercuric Iodide X-Ray Imager,” Proceedings of SPIE, Vol. 4682, 2002, pp. 592-600.
[10] Y. Kang, L. E. Antonuk, Y. El-Mohri, L. Hu, Y. Li, A. Sawant, Z. Su, Y. Wang, J. Yamamoto and Q. Zhao, “Examination of PbI2 and HgI2 Photoconductive Materials for Direct Detection, Active Matrix, Flat-Panel Imagers for Diagnostic X-Ray Imaging,” IEEE Transactions on Nuclear Science, Vol. 52, No. 1, 2005, pp. 38-45. doi:10.1109/TNS.2004.843135
[11] Z. Su, L. E Antonuk, Y. El-Mohri, L. Hu, Hong Du, A. Sawant, Y. Li, Y. Wang, J. Yamamoto and Q. Zhao, “Systematic Investigation of the Signal Properties of Polycrystalline HgI2 Detectors under Mammographic, Radiographic, Fluoroscopic and Radiotherapy Irradiation Conditions,” Physics in Medicine and Biology, Vol. 50, No. 12, 2005, pp. 2907-2928. doi:10.1088/0031-9155/50/12/012
[12] M. Simon, R. A. Ford, A. R. Franklin, S. P. Grabowski, B. Menser, G. Much, A. Nascetti, M. Overdick, M. J. Powell and D. U. Wiechert, “PbO as Direct Conversion X-Ray Detector Material,” Proceedings of SPIE, Vol. 5368, 2004, pp. 188-199.
[13] D. R. Ouimette, S. Nudelman and R. S. Aikens, “A New Large-Area X-Ray Image Sensor,” Proceedings of SPIE, Vol. 3336, 1998, pp. 470-476.
[14] S. Adachi, N.Hori, K. Sato, K. Uehara, Y. Izumi, H. Nagata, Y. Yoshimura and S. Yamada, “Experimental Evaluation of a-Se and CdTe Flat-Panel X-Ray Detectors for Digital Radiography and Fluoroscopy,” Proceedings of SPIE, Vol. 3977, 2000, pp. 38-47.
[15] S. Tokuda, S. Adachi, T. Sato, T. Yoshimuta, H. Nagata, K. Uehara, Y. Izumi, O. Teranuma and S. Yamada, “Experimental Evaluation of a Novel CdZnTe Flat-Panel X-Ray Detector for Digital Radiography and Fluoroscopy,” Proceedings of SPIE, Vol. 4320, 2001, pp. 140-147.
[16] S. Tokuda, H. Kishihara, S. Adachi, et al., “Large-Area Deposition of a Polycrystalline CdZnTe Film AND Its Applicability to X-Ray Panel Detectors with Superior Sensitivity,” Proceedings of SPIE, Vol. 4682, 2002, pp. 30-41.
[17] S. Tokuda, H. Kishihara, S. Adachi and T. Sato, “Improvement of the Temporal Response and Output Uniformity of Polycrystalline CdZnTe Films for High Sensitivity X-Ray Imaging,” Proceedings of SPIE, Vol. 5030, 2003, pp. 861-870.
[18] C. Choi, C. Kyun, S. Kang and S. Nam, “Comparison of Compound Semiconductor Radiation Films Deposited by Screen Printing Method,” Proceedings of SPIE, Vol. 6510, 2007, pp. 651042-1-651042-8.
[19] M. Hoheisel, J. Giersch and P. Bernhardt, “Intrinsic Spatial Resolution of Semiconductor X-Ray Detectors: A Simulation Study,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 531, No. 1-2, 2004, pp. 75-81. doi:10.1016/j.nima.2004.05.077
[20] B. E. McCandless and J. R. Sites, “Cadmium Telluride Solar Cells,” In: A. Lique and S. Hegedus, Eds., Handbook of Photovoltaic Science and Engineering, Wiley, New York, 2003, pp. 617-657.
[21] NIST Database, 2013. http://www.nist.gov/pml/data/xcom/index.cfm
[22] D. Shvydka, E. Parsai and J. Kang, “Radiation Hardness Study of CdTe Thin Films for Clinical High-Energy Photon Beam Detectors,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 586, No. 2, 2008, pp. 169-173. doi:10.1016/j.nima.2007.11.017
[23] A. Cavallini, B. Fraboni, W. Dusi, N. Auricchio, P. Chirco, M. Zanarini, P. Siffert and P. Fougeres, “Radiation Effects on II-VI Compound-Based Detectors,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 476, No. 3, 2002, pp. 770-778. doi:10.1016/S0168-9002(01)01674-6
[24] Y. Eisen, L. G. Evans, S. Floyd, C. Schlemm, R. Starr and J. Trombka, “Radiation Damage of Schottky CdTe Detectors Irradiated by 200 MeV Protons,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 491, No. 1-2, 2002, pp. 176-180. doi:10.1016/S0168-9002(02)01229-9
[25] D. L. Batzner, A. Romeo, M. Dobeli, K. Weinert, H. Zogg and A. N. Tiwari, “High Energy Irradiation Properties of CdTe/CdS Solar Cells,” Proceedings of 29th IEEE Photovoltaic Specialists Conference, New Orleans, 19-24 May 2002, pp. 982-985.
[26] E. Rossa, H. Schmickler, A. Brambilla, L. Verger, F. Mongellaz, “New Development of a Radiation-Hard Polycrystalline CdTe Detector for LHC Luminosity Monitoring,” Proceedings of DIPAC 2001—ESRF, Grenoble, 2001, pp. 94-96
[27] E. I. Parsai, D. Shvydka and J. Kang, “Design and Optimization of Large Area Thin Film CdTe Detector for Radiation Therapy Imaging Applications,” Medical Physics, Vol. 37, No. 8, 2010, pp. 3980-3994. doi:10.1118/1.3438082
[28] F. B. Brown, “MCNP—A General Monte Carlo N-Particle Transport Code,” Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, 2003.
[29] J. M. Boone and J. A. Seibert, “An Accurate Method for Computer Generating Tungsten Anode X-Ray Spectra from 30 to 140 kV,” Medical Physics, Vol. 24, No. 11, 1997, pp. 1661-1670. doi:10.1118/1.597953
[30] T. R. Fewell, R. E. Shuping and K. E. Healy, “Handbook of Computed Tomography X-Ray Spectra,” HHS Publication (FDA) 81-8162, US Government Printing Office, Washington DC, 1981.
[31] D. W. O. Rogers, “Low Energy Electron Transport with EGS,” Nuclear Instruments and Methods, Vol. 227, No. 3, 1984, pp. 535-548. doi:10.1016/0168-9002(84)90213-4
[32] A. F. Bielajew and D. W. O. Rogers, “Experimental Benchmarks of EGS,” In: T. M. Jenkins, W. R. Nelson, A. Rindi, A. E. Nahum and D. W. O. Rogers, Eds., Monte Carlo Transport of Electrons and Photons, Prenum, New York, 1988, pp. 115-137. doi:10.1016/0168-9002(84)90213-4
[33] H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda and A. Ohtsuka, “A Simple Method for Determining the Modulation Transfer-Function in Digital Radiography,” IEEE Transactions on Medical Imaging, Vol. 11, No. 1, 1992, pp. 34-39. doi:10.1109/42.126908
[34] J. C. Dainty and R. Shaw, “Imaging Science: Principles, Analysis and Evaluation of Photographic-Type Imaging Processes,” Academic, London, 1974.
[35] J. H. Siewerdsen, L. E. Antonuk, Y. EI-Mohri, J. Yorkston, W. Huang and I. A. Cunningham, “Signal, Noise Power Spectrum, and Detective Quantum Efficiency of Indirect-Detection Flat-Panel Images for Diagnostic Radiology,” Medical Physics, Vol. 25, No. 5, 1998, pp. 614-628. doi:10.1118/1.598243
[36] M. B. Williams, P. A. Mangiafico and P. U. Simoni, “Noise Power Spectra of Images from Digital Mammography Detectors,” Medical Physics, Vol. 26, No. 7, 1999, pp. 1279-1293. doi:10.1118/1.598623
[37] A. Sawant, L. E. Antonuk, Y. EI-Mohri, Q. Zhao, Y. Li, Z. Su, Y. Wang, J. Yamamoto, H. Du, I. Cunningham, M. Klugerman and K. Shah, “Segmented Crystalline Scintillators: An Initial Investigation of High Quantum Efficiency Detectors for Megavoltage X-Ray Imaging,” Medical Physics, Vol. 32, No. 10, 2005, pp. 3067-3083. doi:10.1118/1.2008407
[38] D. A. Jaffray, J. J. Battista, A. Fenster and P. Munro, “Monte Carlo Studies of X-Ray Energy Absorption and Quantum Noise in Megavoltage Transmission Radiography,” Medical Physics, Vol. 22, No. 7, 1995, pp. 1077-1088. doi:10.1118/1.597593
[39] I. Cunningham, “Applied Linear-Systems Theory,” In: J. Beutel, H. L. Kundel and R. L. Van Metter, Eds., Handbook of Medical Imaging, SPIE Press, Bellingham, 2000, pp. 79-159.
[40] M. J. Yaffe and R. M. Nishikawa, “X-Ray Imaging Concepts: Noise, SNR and DQE,” In: J. A. Seibert, G. T. Barnes and R. G. Gould, Eds., Specification, Acceptance Testing and Quality Control of Diagnostic X-Ray Imaging Equipment, Medical Physics Monograph, The American Institute of Physics, New York, 1994, pp. 109-144.
[41] A. L. Fahrenbruch and R. H. Bube, “Fundamentals of Solar Cells,” Academic Press, New York, 1983.
[42] R. Harju, V. G. Karpov, D. Grecu and G. Dorer, “Electron-Beam Induced Degradation in CdTe Photovoltaics,” Journal of Applied Physics, Vol. 88, No. 4, 2000, pp. 1794-1801. doi:10.1063/1.1305857
[43] D. S. McGregor and H. Hermon, “Room-Temperature Compound Semiconductor Radiation Detectors,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 395, No. 1, 1997, pp. 101-124.
[44] D. L. Lee, L. K. Cheung, E. F. Palechi and L. S. Jeromin, “A Discussion on Resolution and Dynamic Range of Se-TFT Direct Digital Radiographic Detector,” Proceedings of SPIE, 11 April 1996, Newport Beach, pp. 511-522.
[45] J. M. Boone, J. A. Seibert, J. M. Sabol and M. Tecotzky, “A Monte Carlo Study of X-Ray Fluorescence in X-Ray Detectors,” Medical Physics, Vol. 26, No. 6, 1999, pp. 905-916. doi:10.1118/1.598612
[46] G. F. Knoll, “Radiation Detection and Measurement,” 3rd Edition, Wiley, Hoboken, 2000.
[47] N. Strokan, V. Ajdacic and B. Lalovic, “Measurements of the Fano Factor in Germanium,” Nuclear Instruments and Methods, Vol. 94, No. 1, 1971, pp. 147-149. doi:10.1016/0029-554X(71)90352-1
[48] A. Owens and A. Peacock, “Compound Semiconductor Radiation Detectors,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 531, No.1-2, 2004, pp.18-37. doi:10.1016/j.nima.2004.05.071
[49] K. Scharf, “Photovoltaic Effect Produced in Silicon Solar Cells by X and Gamma Rays,” Journal of Research of the National Bureau of Standards, Vol. 64A, No. 4, 1960, pp. 297-307.
[50] G. Entine, R. H. Redus, A. Feyder and P. J. Biggs, “Recent Results with a CdTe Imaging Portal Scanner for Radiation Therapy,” IEEE Transactions on Nuclear Science, Vol. 40, No. 4, 1993, pp. 1012-1016. doi:10.1109/23.256703
[51] R. J. Fox and D. C. Agouridis, “CdTe Photovoltaic Gamma-Ray Dosimeter,” Nuclear Instruments and Methods, Vol. 157, No. 1, 1978, pp. 65-69. doi:10.1016/0029-554X(78)90588-8
[52] R. A. Achmadullin, V. V. Artemov, V. F. Dvoryankina, G. G. Dvoryankina, Y. M. Dikaeva, M. G. Ermakova, O. N. Ermakovaa, V. B. Chmil, A. G. Holodenkoc, A. A. Kudryashova, A. I. Krikunova, A. G. Petrov, A. A. Telegina and A. P. Vorobiev, “Photovoltaic X-Ray Detectors Based on Epitaxial GaAs Structures,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 554, No. 1-3, 2005, pp. 314-319. doi:10.1016/j.nima.2005.07.073
[53] B. N. Zaveryukhin, S. A. Mirsagatov, N. N. Zaveryukhina, V. V. Volodarski and E. B. Zaveryukhina, “Cadmium Telluride Thin-Film Detectors of Nuclear Radiation,” Technical Physics Letters, Vol. 29, No. 11, 2003, pp. 959-962. doi:10.1134/1.1631378
[54] X. Wu, “High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells,” Solar Energy, Vol. 77, No. 6, 2004, pp. 803-814. doi:10.1016/j.solener.2004.06.006
[55] M. Burgelman, P. Nollet and S. Degrave, “Modelling Polycrystalline Semiconductor Solar Cells,” Thin Solid Films, Vol. 361-362, 2000, pp. 527-532. http://users.elis.ugent.be/ELISgroups/solar/projects/scaps.html

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.