iTorin1—An Active Site Inhibitor of mTOR, Suppresses Prostate Cancer Cell Growth Induced by Activated α2M-Macroglobulin Ligation of Cell Surface GRP78

Abstract

In this study, we reported the effect of the ATP binding site competitive inhibitor Torin1 on activated α2-macroglobulin (α2M*)-induced cell proliferation and activation of mTORC1 and mTORC2 signaling in prostate cancer cells. Torin1 significantly inhibited α2M*-induced cellproliferation as measured by protein and DNA synthesis. Translational activity, a major cellular response in malignant cells,is coordinately regulated by the mTORC1-S6-kinaseand mTORC1-4EBP1 axes. Torin1 significantly inhibited α2M*- and insulin-induced activation of mTORC1 as determined by phosphorylation of S6-kinaseat Thr389 and 4EBP1 at Thr37/46 compared to untreated cells employing Raptor immunoprecipitates. Torin1 also significantly inhibited α2M*- and insulin-induced upregulation of p-AktT308 and p-AktS473 in prostate cancer cells. The effect was comparable to that of insulin employed as a positive control. Finally, Torin1 inhibited α2M*- and insulin-induced activation of mTORC2 kinase assayas measured by phosphorylation of Akt at Ser473 inRictor immunoprecipitates of prostate cancer cells.


Share and Cite:

U. Misra and S. Pizzo, "iTorin1—An Active Site Inhibitor of mTOR, Suppresses Prostate Cancer Cell Growth Induced by Activated α2M-Macroglobulin Ligation of Cell Surface GRP78," Journal of Cancer Therapy, Vol. 4 No. 4A, 2013, pp. 74-85. doi: 10.4236/jct.2013.44A008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. P. Hart and S. V. Pizzo, “α-Macroglobulins and Kunins,” In: R. W. Coleman, A.W. Clowes, S. Z. Goldhuber, V. J. Marder and J. N. George, Eds., Hemostasis and Thromboses, Basic Principles, and Clinical Practice, 5h Edition, Chapter 21, Williams and Wilkins, Lippincott, pp. 395-407.
[2] U. K. Misra, M. Gonzalez-Gronow, G. Gawdi, J. P. Johnson and S. V. Pizzo, “The Role of GRP78 in Alpha-2-Macroglobulin-Induced Signal Transduction. Evidence from RNA Interference That the Low Density Lipoprotein Receptor Related Protein Is Associaetd with but Not Necessary for GRP78-Mediated Signal Transformation,” The Journal of Biological Chemistry, Vol. 277, No. 44, 2002, pp. 42082-42087. doi:10.1074/jbc.M206174200
[3] U. K. Misra and S. V. Pizzo, “Potentiation of Signal Transduction Mitogenesis and Cellular Proliferation upon Binding of Receptor-Recognized Forms of Alpha-2-Macroglobulin to 1-LN Prostate Cancer Cells,” Cell Signal, Vol. 16, No. 4, 2004, pp. 487-496. doi:10.1016/j.cellsig.2003.09.010
[4] U. K. Misra, M. Gonzalez-Gronow, G. Gawdi, F. Wang and S. V. Pizzo, “A Novel Receptor Function for the Heat Shock Protein GRP78: Silencing of GRP78 Gene Expression Attenuates Alpha-2-M*-Induced Signaling,” Cell Signal, Vol. 16, No. 8, 2004, pp. 929-938. doi:10.1016/j.cellsig.2004.01.003
[5] U. K. Misra, R. Deedwania and S. V. Pizzo, “Binding of Activated Alpha-2-Macroglobulin to Its Cell Surface Receptor GRP78 in 1-LN Prostate Cancer Cells Regulates PAK-2-Dependent Activation of LIMK,” The Journal of Biological Chemistry, Vol. 280, No. 28, 2005, pp. 26278-27286. doi:10.1074/jbc.M414467200
[6] U. K. Misra, R. Deedwania and S. V. Pizzo, “Activation and Cross-Talk between Akt NFkB and Unfolded Protein Response Signaling in 1-LN Prostate Cancer Cells Consequent to Ligation of Cell Surface-Associated GRP78,” The Journal of Biological Chemistry, Vol. 281, No. 19, 2006, pp. 13694-13707. doi:10.1074/jbc.M511694200
[7] U. K. Misra, S. Payne and S. V. Pizzo, “Ligation of Prostate Cancer Cell Surface GRP78 Activates a Pro-Proliferative and Anti-Apoptotic Feedback Loop: A Role for Secreted Prostate Specific Antigen,” The Journal of Biological Chemistry, Vol. 286, No. 2, 2011, pp. 1248-1259. doi:10.1074/jbc.M110.129767
[8] U. K. Misra, T. Sharma and S. V. Pizzo, “Ligation of Cell Surface-Associated Glucose Regulated Protein 78 by Receptor-Recognized Forms of Alpha-2-Macroglobulin: Activation of p21-Activated Protein Kinase-2-Dependent Signaling in Murine Peritoneal Macrophages,” The Journal of Immunology, Vol. 175, No. 4, 2005, pp. 2225-2233.
[9] U. K. Misra, Y. Mowery, S. Kaczowka and S. V. Pizzo, “Ligation of Cell Surface GRP78 with Antibodies Directed against Its Carboxyl Terminal Domain Upregulates p53 Activity and Promotes Apoptosis,” Molecular Cancer Therapeutics, Vol. 8, No. 5, 2009, pp. 1350-1362. doi:10.1158/1535-7163.MCT-08-0990
[10] U. K. Misra and S. V. Pizzo, “Ligation of Cell Surface GRP78 with Antibodies Directed against the Carboxyl Terminal Domain of GRP78 Suppresses Ras/MAPK and PI-3K/Akt Signaling, While Promoting Caspase Activation in Human Prostate Cancer Cells,” Cancer Biology & Therapy, Vol. 9, No. 2, 2010, pp. 142-152. doi:10.4161/cbt.9.2.10422
[11] U. K. Misra, and S. V. Pizzo, “Receptor-Recognized 2-Macroglobulin Binds to Cell Surface-Associated GRP78 and Activates mTORC1 and mTORC2 Signaling in Prostate Cancer Cells,” PloS One, Vol. 7, No. 12, 2012, Article ID: e51735. doi:10.1371/journal.pone.0051735
[12] U. K. Misra and S. V. Pizzo, “Modulation of Unfolded Protein Response in Prostate Cancer Cells by Carboxyl Terminal Domain of GRP78,” Apoptosis, Vol. 15, No. 2, 2010, pp. 173-182. doi:10.1007/s10495-009-0430-y
[13] P. J. Mintz, J. Kim, K. A., Do, X. Wang, R. G. Zinner, M. Cristofanilli, M. A. Arap, W. K. Hong, P. Troncoso, C. J. Logethetis, R. Pasqualini and W. Arap, “Fingerprinting the Circulating Repertoire of Antibodies from Cancer Patients,” Nature Biotechnology, Vol. 21, No. 1, 2003, pp. 57-63.doi:10.1038/nbt774
[14] M. A. Arap, J. Lahdenranta, J. Mintz, P. J. Hajitou, A. S. Sarkis, W. Arap and R. Pasqualini, “Cell Surface Expression of the Stress Response Chaperone GRP78 enables Tumor Targeting by Circulating Ligands,” Cancer Cell, Vol. 6, No. 3, 2004, pp. 275-284. doi:10.1158/0008-5472.CAN-06-1721
[15] M. Gonzalez-Gronow, M. Cuchacovich, C. Llanos, C. Urzua, C. G. Gawdi and S. V. Pizzo, “Prostate Cancer Cell Proliferation in Vitro Is Modulated by Antibodies against Glucose-Regulated Protein 78 Isolated from Patient Serum” Cancer Research, Vol. 66, No. 23, 2006, pp. 11424-11431. doi:10.1158/0008-5472.CAN-06-1721
[16] M. Gonzalez-Gronow, S. V. Pizzo and U. K. Misra, “GRP78 (BiP): A Multifunctional Cell Surface Receptor,” In: B. Henderson and A. G. Pockley, Eds., Cellular Trafficking of Cell Stress Proteins in Health and Diseases, Springer Science Business Media, Dordrecht, 2013, pp. 229-242.
[17] G. de Ridder, R. Ray and S. V. Pizzo, “A Murine Monoclonal Antibody Directed against the Carboxyl-Terminal Domain of GRP78 Suppresses Melanoma Growth in Mice,” Melanoma Research, Vol. 22, No. 3, 2012, pp. 225-235. doi:10.1097/CMR.0b013e2835312fd
[18] E. Fayard, G. Xue, A. Parcellier, A. L. Bozulic and B. A. Hemmings, “Protein Kinase B (PKB/Akt) a Key Mediator of the PI 3-K Signaling Pathway,” Current Topics in Microbiology and Immunology, Vol. 346, 2010, pp. 31-56. doi:10.1007/82_2010_58
[19] D. D. Sarbassov, D. A. Guertin, S. M. Ali and D. M. Sabatini, “Phosphorylation and Regulation of Akt/PkB by the Rictor-mTOR Complex,” Science, Vol. 307, No. 5712, 2005, pp. 1098-1101. doi:10.1126/science.1106148
[20] M. Andjelkovic, M. D. R. Alessi, R. Meier, A. Fernandez, N.-J. Lamb, M. Frech, P. Cron, P. Cohen P, J. M. Lucocq and B. A. Hemmings, “Role of Translocation in the Activation and Function of Protein Kinase B,” The Journal of Biological Chemistry, Vol. 272, No. 50, 1997, pp. 31515-31524. doi:10.1074/jbc.272.50.31515
[21] V. Facchinetti, W. Ouyang, H. Wei, N. Soto, A. Lazorchak, C. Gould, C. Lowry, A. C. Newton, Y. Mao, R. Q. Miao, W. C. Sessa, J. Qin, P. Zhang, B. Su and E. Jacinto, “The Mammalian Targeted Rapamycin Complex 2 Targeted Rapamycin Complex-2 Controls Folding and Stability of Akt and Protein Kinase C,” EMBO Journal, Vol. 27, No. 14, 2008, pp. 1932-1943. doi:10.1038/emboj.2008.120
[22] M. L. Chen, P. Z. Xu, X. D. Peng, W. S. Chen, G. Guzman, X. Yang, A. DiCristofano, P. P. Pandolfi and N. Hay, “The Deficiency of Akt Is Sufficient to Suppress Tumor Development in Pten +/? Mice,” Genes & Development, Vol. 20, No. 12, 2006, pp. 1569-1574. doi:10.1101/gad.1395006PMid:16778075
[23] S. N. Malik, M. Brattian, D. M. Ghosh, D. A. Troyer, T. Prihoda, R. Bedolla and J. I. Kreisberg, “Immunohistochemical Demonstration of Phospho-Akt in High Gleason Grade Prostate Cancer,” Clinical Cancer Research, Vol. 8, No. 4, 2002, pp. 1168-1171.
[24] Y. Liao, R. Grobholz, R. U. Abed, L. Trojan, M. S. Michel, P. Angel and D. Mayer, “Increase of Akt/PKB Expression Correlates with Gleason Pattern in Human Prostate Cancer,” International Journal of Cancer, Vol. 107, No. 4, 2003, pp. 676-680. doi:10.1002/ijc.11471
[25] G. Ayala, T. Thompson, G. Yang, A. Frolov, A. R. Li, P. Scardino, M. Ohori, T. Wheeler and W. Harper, “High Levels of Phosphorylated Form of Akt-1 in Prostate Cancer and Non-Neoplastic Prostate Tissues Are Strong Predictors of Biochemical Recurrence,” Clinical Cancer Research, Vol. 10, No. 19, 2004, pp. 6572-6578. doi:10.1158/1078-0432.CCR-04-0477
[26] J. I. Kreisberg, S. Malik, T. J. Prihoda, R. G. Bedolla, D. H. Troyer, S. Kreisberg and P. M. Ghosh, “Phosphorylation of Akt (Ser473) Is an Excellent Predictor of Poor Clinical Outcome in Prostate Cancer,” Cancer Research, Vol. 64, No. 15, 2004, pp. 5232-5238. doi:10.1158/0008-5472.CAN-04-0272
[27] R. Zoncu, A. Efeyan and D. M. Sabatini, “mTOR from Growth Signal Integration to Cancer Diabetes and Aging,” Nature Reviews Molecular Cell Biology, Vol. 12, No. 1, 2011, pp. 21-35. doi:10.1038/nrm3025
[28] J. L. Yecies and B. D. Manning, “mTOR Links Oncogenic Signaling to Tumor Cell Metabolism,” Journal of Molecular Medicine, Vol. 9, No. 1, 2011, pp. 221-228. doi:10.1007/s00109-011-0726-6
[29] C. A. Sparks and D. A. Guertin, “Targeting mTOR: Prospects for mTOR Complex 2 Inhibitors in Cancer Therapy,” Oncogene, Vol. 29, No. 26, 2010, pp. 3733-3744. doi:10.1038/onc.2010.139
[30] G. Magnuson, B. Ekim and D. C. Fingar, “Regulation and Function of Ribosomal Protein S6-Kinase (S6K) within mTOR Signaling Network,” Biochemical Journal, Vol. 441, No. 1, 2012, pp. 1-21. doi:10.1042/BJ20110892
[31] O. Larsson, B. Tian and N. Sonenberg, “Toward a Genome-Wide Landscape of Translational Control,” Cold Spring Harbor Perspectives in Biology, Vol. 5, No. 1, 2013, p. a0132302. doi:10.1101/cshperspect.a012302
[32] M. Laplante and D. M. Sabatini, “mTOR Signaling in Growth Control and Disease,” Cell, Vol. 149, No. 2, 2012, pp. 274-293. doi:10.1016/j.cell.2012.03.017
[33] X. M. Ma and J. Blenis, “Molecular Mechanisms of mTOR-Mediated Translational Control,” Nature Reviews Molecular Cell Biology, Vol. 10, No. 5, 2009, pp. 307-318. doi:10.1038/nrm2672
[34] V. Zinzalla, V. D. Stracka, D. W. Oppliger and M. N. Hall, “Activation of mTORC2 by Association with the Ribosome Cell,” Cell, Vol. 144, No. 5, 2011, pp. 757-768. doi:10.1016/j.cell.2011.02.014
[35] J. Dancey, “mTOR Signaling and Drug Development in Cancer,” Natural Reviews. Clinical. Oncology, Vol. 7, No. 4, 2010, pp. 209-219. doi:10.1038/nrclinonc.2010.21
[36] A. Gomez-Pinillos and A. C. Ferrari, “mTOR Signaling Pathways on mTOR Inhibitors in Cancer Therapy,” Hematology/Oncology Clinics of North America, Vol. 26, No. 3, 2012, pp. 483-505. doi:10.1016/j.hoc.2012.02.014
[37] S. A. Wander, B. Hennessy and J. M. Slingerland, “Next Generation mTOR Inhibitors in Clinical Oncology: How Pathway Complexity Informs Therapeutic Strategy,” The Journal of Clinical Investigation, Vol. 121, No. 4, 2011, pp. 1231-1241. doi:10.1172/JCI44145
[38] M. E. Feldman, B. Apsel, B. A. Uotilla, R. Loewith, Z. A. Knight, D. Ruggero and K. M. Shokat, “Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2,” PloS Biology, Vol. 71, No. 2, 2009, p. e38.
[39] C. Thoreen, S. A. Kang, J. W. Chang, Q. Liu, J. Zhang, Y. Gao, L. J. Reichling, Sim T., D. M. Sabatini and N. S. Gray, “An ATP Competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin-Resistant Functions of mTORC1,” The Journal of Biological Chemistry, Vol. 284, No. 12, 2009, pp. 8023-8032. doi:10.1074/jbc.M900301200
[40] J. M. Garcia-Martinez, J. Moran, R. G. Clarke, R. G. A. Gray, S. C. Cosulich, C. M. Chresta and D. R. Alessi, “KU-0063794 Is a Specific Inhibitor of the MammalianTarget of Rapamycin (mTOR),” Biochemical Journal, Vol. 421, No. 1, 2009, pp. 29-42. doi:10.1042/BJ20090489
[41] K. Yu, L. Toral-Barza, C. Shi, W. G. Zhang, J. Lucas, B. Shor, J. Kim, J. Verheijen, K. Curran, D. J. Malwitz, D. C. Cole, J. Ellingboe, S. Ayral-Kaloustian, T. S. Mansour, J. J. Gibbons, R. T. Abraham, P. Nowak and A. Zask, “Biochemical Cellular and in Vivo Activity of Novel ATP Competitive and Selective Inhibitors of the Mammalian Targeted Rapamycin,” Cancer Research, Vol. 69, No. 15, 2009, pp. 6232-6246.
[42] U. K. Misra and S. V. Pizzo, “Epac1-Induced Cellular Proliferation in Prostate Cancer Cells Is Mediated by B-Raf-ERK and mTOR Signaling Cascades,” Journal of Cellular Biochemistry, Vol. 108, No. 4, 2009, pp. 998-1011. doi:10.1002/jcb.22333
[43] U. K. Misra and S. V. Pizzo, “Upregulation of mTORC2 Activation by the Selective Agonist of Epac-8-CPT-2MecAMP in Prostate Cancer Cells: Assembly of a Multiprotein Signaling Complex,” Journal of Cellular Biochemistry, Vol. 113, No. 5, 2012, pp. 1488-1500. doi:10.1002/jcb.24018
[44] W. Borth, “Alpha-2-Macroglobulin, a Multifunctional Binding Protein with Targeting Characteristics,” FASEB, Vol. 6, No. 15, 1992, pp. 3345-3353.
[45] A. Otto, J. Bar and G. Birkenmeier, “Prostate-Specific Antigen Forms Complexes with Human Alpha-2-Macroglobulin and Binds to the Alpha-2-Macroglobulin Receptor/LDL Receptor-Related Protein,” The Journal of Urology, Vol. 159, No. 1, 1998, pp. 297-303. doi:10.1016/S0022-5347(01)64085-0
[46] U. K. Misra, S. Kaczowska and S. V. Pizzo, “Inhibition of NF-Kappa B1 and NF-Kappa B2 Activation in Prostate Cancer Cells Treated with Antibody against Car-boxylTerminal Domain of GRP78: Effected p53 Upregulation,” Biochemical and Biophysical Research Communications, Vol. 392, No. 4, 2010, pp. 538-542. doi:10.1016/j.bbrc.2010.01.058
[47] U.K. Misra and S.V. Pizzo, “Modulation of the Unfolded Protein Response in Prostate Cancer Cells by AntibodyDirected against the Carboxyl Terminal Domain of GRP78,” Apoptosis, Vol. 15, No. 2, 2010, pp. 173-182. doi:10.1007/s10495-009-0430-y
[48] U. K. Misra and S. V. Pizzo, “AFT-Alpha Inhibit Antibody-Induced Activation of p53 and p20-Apoptotic Signaling in 1-LN Prostate Cancer Cells,” Biochemical and Biophysical Research Communications, Vol. 391, No. 1, 2010, pp. 272-276. doi:10.1016/j.bbrc.2009.11.048
[49] J. Masri, A. Bernath, J. Martin, O. D. Jo, R. Vartanian, A. Funk and J. Gera, “ mTORC2 Activity Is Elevated in Gliomas and Promotes Growth and Cell Motility via Overexpression of Rictor,” Cancer Research, Vol. 67, No. 24, 2007, pp. 11712-11720. doi:10.1158/0008-5472.CAN-07-2223PMid:18089801
[50] L. Furic, L. Rong, O. Larsson, I.-H. Kohmakpayi, K. Yoshida, A. Brueschke, E. Petroulakis, E. Robichand, N. Pollak, M. Gaboury, P. D. Pondolfi, F. Saad and N. Sonenberg, “eIF4E Phosphorylation Promotes Tumorigenesis and Is Associated with Prostate Cancer Progression,” Proceedings of the National of Academy of Sciences of USA, Vol. 107, No. 32, 2010, pp. 14134-14139.
[51] X. Wang, Z. Hu, J. Hu, J. Du and W. E. Mitch, “Insulin Resistance Accelerates Muscle Protein Degradation: Activation of Ubiquitin-Proteosomes Pathway by Defects in Muscle Cell Signaling,” Endocrinology, Vol. 147, No. 9, 2006, pp. 4160-4168. doi:10.1210/en.2006-0251 doi:10.1210/en.2006-0251PMid:16777975
[52] D. Benjamin, M. Colombi, C. Moroni and M. N. Hall, “Rapamycin Passes the Torch: A New Generation of mTOR Inhibitors,” Nature Reviews, Drug Discovery, Vol. 10, No. 11, 2011, pp. 868-880.
[53] Q. Liu, S. Kirubakaran, W. Hur, M. Niepel, K. Westover, C. Thoreen, J. Wang, J. Ni, M. P. Patricelli, K. Vogel, S. Riddle, D. L. Waller, R. Traynor, T. Sanda, Z. Zhao, S. A. Kang, J. Zhao, K. A. T. Look, P. K. Sorger, D. N. Sabatini and N. S. Gray, “Kinome-Wide Selectivity Profiling of ATP-Competitive Mammalian Target of Rapamycin (mTOR) Inhibitors and Characterization of Their Binding Kinetics,” The Journal of Biological Chemistry, Vol. 287, No. 13, 2012, pp. 9742-9752.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.