Dielectric and Electric Modulus Behavior of Chlorinated Poly(Vinyl Chloride) Stabilized with Phenyl Maleimide

Abstract

Dielectric constant, ε', dielectric loss factor, ε", electric modulus, M, and ac conductivity, σac, of pure CPVC and that stabilized with 10 wt% of phenyl maleimide, PM, have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 310 K - 450 K and 1 kHz- 4 MHz, respectively. The incorporation of 10 wt% of PM as stabilizer for CPVC leads to reduce its Tg from 405K to 378K at 10 kHz. PM molecules within CPVC structure reduce the double bond, stabilizer effect, and cause the widely spacing between CPVC main chains, plasticizer effect.  Three dielectric relaxation processes namely ρ, α', and α were observed for pure CPVC. The first process was explained based on space charge formation or Maxwell-Wagner-Sillers, MWS, polarization. The second one is due to the segmental motion of the branching of CPVC. The third process occurs around the glass-rubber temperature, Tg, and is related to the micro-Brownian motion of the main polymer chain. Electric modulus and ac conductivity reveal that the conduction mechanism of CPVC is follow the correlated barrier hopping, CBH, while stabilized sample exhibits a quantum mechanical tunneling, QMT, type conduction.

Share and Cite:

T. Hanafy, "Dielectric and Electric Modulus Behavior of Chlorinated Poly(Vinyl Chloride) Stabilized with Phenyl Maleimide," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 255-266. doi: 10.4236/ampc.2012.24038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. O. Elakesh, T. Hull, D. Price and P. Carty, “Effect of Stabi-lisers and Lubricant on the Thermal Decomposition of Chlorinated Poly(Vinyl Chloride) (CPVC),” Polymer Degradation and Stability, Vol. 88, No. 1, 2005, pp. 41- 45. doi:10.1016/j.polymdegradstab.2004.04.027
[2] P. Carty, S. White, D. Price and L. Lu, “Smoke-Suppression in Plasticised Chlorinated Poly(Vinyl Chloride) (CPVC),” Polymer Degradation and Stability, Vol. 63, No. 3, 1999, pp. 465-468. doi:10.1016/S0141-3910(98)00075-5
[3] P. Carty and S. White, “The Effect of DOP Plasticizer on Smoke Formation in Poly(Vinyl Chloride),” Polymer, Vol. 33, No. 5, 1992, pp. 1110-1111. doi:10.1016/0032-3861(92)90033-S
[4] S. Mahrous, T. A. Hanfy and M. S. Sobhy, “Dielectric Relaxation of Chlorinated Polyvinyl Chloride (CPVC) Stabilized with Cyanoguanidine,” Current Applied Physics, Vol. 7, No. 6, 2007, pp. 629-635. doi:10.1016/j.cap.2007.01.002
[5] S. Mahrous and T. A. Hanafy, “Dielectric Analysis of Chlorinated Polyvinyl Chloride Stabilized with Di-n-octyltin Maleate,” Journal of Applied Polymer Science, Vol. 113, No. 1, 2009, pp. 316-320. doi:10.1002/app.29490
[6] N. Merah, F. Saghir, Z. Khan and A. Baz Aoune, “Effects on Fatigue Crack Growth Resistance of CPVC,” Engineering Fracture Mechanics, Vol. 72, No. 11, 2005, pp 1691-1701. doi:10.1016/j.engfracmech.2004.12.002
[7] D. G. H. Ballard, A. N. Burgess, J. M. Dekoninck and E. A. Roberts, “The ‘crys-tallinity’ of PVC,” Polymer, Vol. 28, 1987, pp. 3-9.
[8] R. D. Dworkin, “PVC Stabilizers of the Past, Present, and Future,” Journal of Vinyl Technology, Vol. 11, No. 1, 1989, pp. 15-22. doi:10.1002/vnl.730110106
[9] S. B. Brown and C. M. Orlando, “Encyclopedia of Polymer Science and Engineering,” Wiley, New York, 1988.
[10] M. W. Sabaa, N. A. Mohamed, E. H. Oraby and V. Yassin, “Organic Thermal Stabilizers for Rigid Poly(Vinyl Chloride) V. Benzimidazolylacetonitrile and Some of Its derivatives,” Polymer Degradation and Stability, Vol. 76, No. 3, 2002, pp. 367-380. doi:10.1016/S0141-3910(02)00009-5
[11] A. S. Abdel-Naby and S. A. Nouh, “Stabilization of Poly(Vinyl Chloride) against Laser Radiation with Ethyl- N-phenylmaleimide-4-caboxylate,” Polymer Degradation and Stability, Vol. 76, No. 3, 2002, pp. 419-423. doi:10.1016/S0141-3910(02)00043-5
[12] M. Mujahid, D. S. Srivastava and D. K. Avasthi, “Dielectric Constant and Loss Factor Measurement of Polycarbonate, Makrofol KG Using Swift Heavy ion O5+,” Radiation Physics and Chemistry, Vol. 80, No. 4, 2011, pp 582-586. doi:10.1016/j.radphyschem.2010.12.007
[13] T. Sterzyński, J. Tomaszewska, K. Piszczek and K. Sk?rczewska, “The Influence of Carbon Nanotubes on the PVC Glass Transition Temperature,” Composites Science and Technology, Vol. 70, No. 6, 2010, pp. 966-969.
[14] A. Yassin, M. Sabaa and N. Mohamed, “N-Substituted Maleimides as Photo-Stabilizers for Rigid Poly(Vinyl Chloride),” Polymer Degradation and Stability, Vol. 29, No. 3, 1990, pp. 291-303.
[15] A. Hassen, T. A. Hanafy, S. El-Sayed and A. Himanshu, “Dielectric Relaxation and Alternating Current Conductivity of Polyvinylidene Fluoride Doped with Lanthanum Chloride,” Journal of Applied Physics, Vol. 110, No. 11, 2011, Article ID: 144119. doi:10.1063/1.3669396
[16] M. A. Ahmed, A. M. Basha, H. K. Marey and T. A. Hanafy, “Effect of Fast Neutrons and Radiation on Cobalt-Gelatin Film,” Journal of Applied Polymer Science, Vol. 79, No. 10, 2001, pp. 1749-1755. doi:10.1002/1097-4628(20010307)79:10<1749::AID-APP20>3.0.CO;2-H
[17] A. Chelkovski, “Dielectric Physics,” Elsevier Science, Amsterdam, 1980.
[18] F. Kremer and M. Arntt, “Di-electric Spectroscopy of Polymeric Materials,” American chemical Society, Washington DC, 1997.
[19] M. Narisawa and K. Ono, “Polymer Interaction and Structure of PVA-Cu(II) Complex: 1. Binding of a Hydrophobic Dye Toward PVA-Cu(II) Complex,” Polymer,Vol. 30, No. 8, 1989, pp. 1540-1545.
[20] T. A. Hanafy, “Dielectric Relaxation and Alternating- Current Conductivity of Gadolinium-Doped Poly(Vinyl Alcohol),” Journal of Applied Polymer Science, Vol. 108, 2008, pp. 2540-2549.
[21] M. A. Ahmed and T. A. Hanafy, “Dielectric Relaxation and Poole-Frenkel Conduction in Poly(Vinyl Chloride) Blends with Bisphenol A/Egyptian Corncob Resin,” J. Journal of Applied Polymer Science, Vol. 109, No. 1, 2008, pp. 182-189. doi:10.1002/app.28075
[22] S. Mahrous, “Dielectric Analysis of the α-Relaxation of PVC Stabilized with Cadmium Laurate,” Polymer International, Vol. 40, No. 4, 1996, pp. 261-267.
[23] T. A. Hanafy, K. Elbana, S. Elsayed and A. Hassen, “Dielectric Relaxation Analysis of Biopolymer Poly(3-hydroxybutyrate),” Journal of Applied Polymer Science, Vol. 121, No. 6, 2011, pp. 3306-3313. doi:10.1002/app.33950
[24] R. Singh, J. Kumar, R. K. Singh, A. Kaur, R. D. P. Sinha and N. P. Gupta, “Low Frequency ac Conduction and Dielectric Relaxation Behavior of Solution Grown and Uniaxially Stretched Poly(Vinylidene Fluoride) Films,” Polymer, Vol. 47, No. 16, 2006, pp. 5919-5928.
[25] M. Abdelaziz and M. M. Ghannam, “Influence of Titanium Chloride Addition on the Optical and Dielectric Properties of PVA Films,” Physica B, Vol. 405, No. 3, 2010, pp. 958-964. doi:10.1016/j.physb.2009.10.030
[26] F. Bassiouni, F. Al-shamy, N. K. Madi and M. E. Kassem, “Temperature and Electric Field Effects on the Dielectric Dispersion of Modified Polyvinyl Chloride,” Materials Letters, Vol. 57, No. 8-10, 2003, pp. 1595-1603.
[27] M. A. Ahmed, “Optical Absorption and Electrical Properties of Polyvinyl Alcohol (PVA)-Gelatin Blend,” Indian Journal of Physics, Vol. 79, No. 10, 2005, pp. 1149-1155.
[28] G. M. Tsangaris, G. C. Psarras and N. Kouloumbi, “Evaluation of the Dielectric Behavior of Particulate Composites Consisting of a Polymeric Matrix and a Conductive Filler,” Materials Science and Technology, Vol. 12, No. 7, 1996, pp. 533-538. doi:10.1179/026708396790166037
[29] C. N. Hampton, G. Carini, G. Dimarco and M. Lanza, “Temperature and Frequency Dependencies of the Complex Dielectric Constant of Poly(Ethylene Oxide) under Hydrostatic Pressure,” Journal of Polymer Science Part B: Polymer Physics, Vol. 34, No. 3, 1996, pp. 425-433.
[30] G. S. Rillick and J. Runt, “A Dielectric Study of Poly(Ethylene-co-Vinylacetate)-Poly(Vinyl Chloride) Blends. I. Miscibility and Phase Behavior,” Journal of Polymer Science Part B: Polymer Physics, Vol. 24, No. 2, 1986, pp. 279-302. doi:10.1002/polb.1986.090240206
[31] M. Ram and S. Chakrabarti, “Dielectric and Modulus Behavior of LiFe1/2Ni1/2VO4 Ceramics,” Journal of Physics and Chemistry of Solids, Vol. 69, No. 4, 2008, pp. 905-912. doi:10.1016/j.jpcs.2007.10.008
[32] A. A. Yassin and M. W. Sabaa, “Degradation and Stabilization of Poly(Vinyl Chloride) JMS-REV,” Macromolecular Chemistry and Physics C, Vol. 30, No. 3-4, 1990, pp. 491-558.
[33] T. A. Hanafy, “Transient and Steady State Currents of Bisphenol A Corncobs Sample,” Advances in Materials Physics and Chemistry, Vol. 1, 2011, pp. 99-107.
[34] F. H. Elkader, W. H. Osman, K. H. Mahmoud and M. A. F. Basha, “Dielectric Investigations and ac Conductivity of Polyvinyl Alcohol Films Doped with Europium and Terbium Chloride,” Physica B, Vol. 403, No. 19-20, 2008, pp. 3473-3484.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.