Microwave Assisted and Al2O3/K2CO3 Catalyzed Synthesis of Azetidin-2-One Derivatives Containing Aryl Sulfonate Moiety with Anti-Inflammatory and Anti-Microbial Activity

Abstract

We report the novel synthesis of azetidin-2-one derivatives containing aryl sulfonate moiety from the reaction of 2-hydroxy benzaldehyde with p-toluene sulfonyl chloride afforded firstly 2-formylphenyl 4-methylbenzene sulfonate (2). The compound (2) on reaction with p-aminobenzoic acid or 2-aminopyridine gave the corresponding aldimines (3). Furthermore, the aldimines are on reaction with chloroacetyl chloride gives corresponding azetidin-2-ones in good to moderate yield. Among the eight synthesized azetidin-2-ones, five selected compounds have been screened for the an-ti-inflammatory activity, few of them showed good anti-inflammatory activity compared with standard drugs. Anti- microbial activity of all synthesized compounds has been tested and most of the compounds showed good anti-bacterial and anti-fungal activities.

Share and Cite:

B. Kendre, M. Landge and S. Bhusare, "Microwave Assisted and Al2O3/K2CO3 Catalyzed Synthesis of Azetidin-2-One Derivatives Containing Aryl Sulfonate Moiety with Anti-Inflammatory and Anti-Microbial Activity," Open Journal of Medicinal Chemistry, Vol. 2 No. 3, 2012, pp. 98-104. doi: 10.4236/ojmc.2012.23012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Rokade and N. Dongare, “Synthesis and Antimicrobial Activity of Some Azetidinone Derivatives with the βnaphthol,” Rasayan Journal of Chemistry, Vol. 3, No. 4, 2010, pp. 641-645.
[2] R. S. Keri, K. M. Hosamani, R. V. Shingalapur and H. R. S. Reddy, “2-Azetidinone Derivatives: Design, Synthesis, in Vitro Anti-Microbial, Cytotoxic Activities and DNA Cleavage Study,” European Journal of Medicinal Chemistry, Vol. 44, No. 12, 2009, pp. 5123-5130. doi:10.1016/j.ejmech.2009.09.011
[3] N. M. O’Boyle, M. Carr, L. M. Greene, N. O. Keely, A. J. S. Knox, T. McCabe, D. G. Lloyd, D. M. Zisterer and M. J. Meegan, “Synthesis, Biochemical and Molecular Modelling Studies of Antiproliferative Azetidinones Causing Microtubule Disruption and Mitotic Catastrophe,” European Journal of Medicinal Chemistry, Vol. 46, No. 9, 2011, pp. 4595-4607. doi:10.1016/j.ejmech.2011.07.039
[4] B. M. Brooks, C. A. Hart and J. W. Coleman, “Differential Effects of Beta-Lactams on Human IFN-Gamma Activity,” The Journal of Antimicrobial Chemotherapy, Vol. 56, No. 6, 2005, pp. 1122-1125. doi:10.1093/jac/dki373
[5] S. R. Keri, K. M. Hosamani, R. V. Shingalapur and H. R. S. Reddy, “2-Azetidinone Derivatives: Design, Synthesis, in Vitro Anti-microbial, Cytotoxic Activities and DNA Cleavage Study” European Journal of Medicinal Chemistry, Vol. 44, No. 12, 2009, pp. 5123-5130. doi:10.1016/j.ejmech.2009.09.011
[6] B. Raga, L. Amith, T. VijayKumar, M. Havangirao and C. H. Upendra, “Synthesis and Antitubercular Activities of Azetidinone and Thiazolidinone Derivatives from 5-Chloro3-Methylbenzofuran,” International Journal of ChemTech Research, Vol. 2, No. 3, 2010, pp. 1764-1770.
[7] B. Xu, “New Azetidinone Cholesterol Absorption Inhibitors,” Expert Opinion on Therapeutic Patents, Vol. 17, No.7, 2007, pp. 791-797. doi:10.1517/13543776.17.7.791
[8] J. B. Doherty, C. P. Dorn, P. L. Durette, P. E. Finke, M. MacCoss, S. G. Mills, S. K. Shah, S. P. Sahoo, S. A. Polo and W. K. Hagmann, “Substituted Azetidinones as AntiInflammatory and Antidegenerative Agents,” Wild Ones, Vol. 94, No. 10, 1994, p. 143.
[9] M. Feledziak, C. Michaux, A. Urbach, G. Labar, G. G. Muccioli, D. M. Lambert and J. Marchand-Brynaert, “β-Lactams Derived from a Carbapenem Chiron are Selective Inhibitors of Human Fatty Acid Amide Hydrolase Versus Human Monoacylglycerol Lipase,” Journal of Medicinal Chemistry, Vol. 52, No. 22, 2009, pp. 70547068. doi:10.1021/jm9008532
[10] N. D. Christensen, C. A. Reed, T. D. Culp, P. L. Hermonat, M. K. Howett, R. A. Anderson and L. J. Zaneveld, “Papillomavirous Microbicidal Activities of High-Molecular-Weight Cellulose Sulphate, Dextrane Sulphate and Polystyrene Sulfonate,” Antimicrob Agents Chemother, Vol. 45, No. 12, 2001, pp. 3427-3432. doi:10.1128/AAC.45.12.3427-3432.2001
[11] S. Rusconi, M. Moonis, D. P. Merrill, P. V. Pallai, E. A. Neidhardt, S. K. Singh, M. S. Osburne, A. T. Profy, J. C. Jenson and M. S. Hirsch, “Naphthalene Sulfonate Polymers with CD-4 Blocking and Anti-human Immunodeficiency Virus Type 1 Activities,” Antimicrob Agents Chemother, Vol. 40. No. 1, 1996, pp. 234-236.
[12] M. A. Hanna, M. M. Girges and M. A. Berghot, “Sulfonate Ester-Containing (Imidazol-1-yl)-N-Substituted Benzenesulfonamides of Anticipated Antineoplastic Activity,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 61, No. 3-4, 1991, pp. 239-246. doi:10.1080/10426509108036803
[13] L. M. Betts, N. C. Tam, S. M. H. Kabir, R. F. Langler and I. Crandall, “Ether Aryl Sulfonic Acid Esters with Improved Antimalarial/Anticancer Activities,” Australian Journal of Chemistry, Vol. 59. No. 4, 2006, pp. 277-282. doi:10.1071/CH04299
[14] L. Cyr, R. Langler and C. Lavigne, “Cell Cycle Arrest and Apoptosis Responses of Human Breast Epithelial Cells to the Synthetic Organosulfur Compound p-Methoxyphenyl p-Toluenesulfonate,” Anticancer Research, Vol. 28, No. 5A, 2008, pp. 2753-2764
[15] C. A. Winter, E. A. Risely and G. W. Nuss, “Carregeenin Induced Oedema in Hind Paw of the Rat as Assay for Antiinflammatory Drugs,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 111, 1962, pp. 544-547.
[16] “Indian Pharmacopoeia, Microbiological Assay and Test, ed,” Vol. 2, 1996, A-100-107.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.