Crystallization Kinematics and Dielectric Behavior of (Ba,Sr)TiO3 Borosilicate Glass Ceramics

Abstract

Perovskite [(Ba0.6Sr0.4)TiO3]-[2SiO2-B2O3]-[K2O]-La2O3 glass was prepared by conventional melt quench method. The differential thermal analysis (DTA) was performed on glass sample in the temperature range from 100℃ to 1000℃ by different heating rate to study the crystallization kinematics. The kinetic parameters characterizing the crystallization have been determined using an Arrhenius model. Glass samples were subjected to appropriate heat treatment schedules for their suitable crystallization. X-ray diffraction analysis (XRD) of glass and glass ceramic samples were done to check the amorphous state and crystalline nature. XRD of glass ceramic sample shows the major perovskite phase of BaTiO3 (BT) along with the formation of secondary phases Ba2TiSi2O8 (BTS) and Ba2Ti2B2O9 (BTB). Scanning electron microscopy (SEM) is also studied to see the morphology of the grains of major and secondary phase formation in BST glass ceramic samples. La2O3 is played an important role to increase the nucleation of the crystallites in the glassy matrix. The addition of La22O3 results in development of well interconnected crystallites formed as major phase of BST. In this paper, we are reporting the crystallization behavior of BST borosilicate glass system and high temperature dielectric characteristics of their glass ceramics.

Share and Cite:

A. Yadav, C. Gautam and P. Singh, "Crystallization Kinematics and Dielectric Behavior of (Ba,Sr)TiO3 Borosilicate Glass Ceramics," New Journal of Glass and Ceramics, Vol. 2 No. 3, 2012, pp. 126-131. doi: 10.4236/njgc.2012.23018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. W. McMillan, “Glass Ceramics,” Academic Press, New York, 1979.
[2] G. Tammann, “The States of Aggregation,” Van Nostrand, New York, 1925.
[3] T. Kokubo and M. Tashiro, “Dielectric Properties of Fine-Grained PbTiO3 Crystals Precipitated in a Glass,” Journal of Non-Crystalline Solids, Vol. 13, No. 2, 1974, pp. 328-340.
[4] C. Estournes, T. Lutz, J. Happich, T. Quaranta, P. Wissler and J. L. Guille, “Nickel Nanoparticles in Silica Gel: Preparation and Magnetic Properties,” Journal of Magnetism and Magnetic Materials, Vol. 173, No. 1-2, 1997, pp. 83-92. doi:10.1016/S0304-8853(97)00144-3
[5] K. Kageyama and J. Takahashi, “Tunable Microwave Properties of Barium Titanate-Based Ferrolectric Glassceramics,” Journal of the American Ceramic Society, Vol. 87, No. 8, 2004, pp. 1602-1605.doi:10.1111/j.1551-2916.2004.01602.x
[6] K. Oda, T. Yoshino and K. O. Oka, “Preparation and Dielectric Properties of (Ba,Sr)TiO3-Al2O3-SiO2 Glassceramics,” Memoirs of the School of Engineering Okayama University, Vol. 17, 1983, pp. 97-105.
[7] A. Herczog, “Microcrystalline BaTiO3 by Crystallization from Glass,” Journal of the American Ceramic Society, Vol. 47, No. 3, 1964, pp. 107-116.doi:10.1111/j.1151-2916.1964.tb14366.x
[8] D. McCauley, R. E. Newnham and C. A. Randall, “Intrinsic Size Effects in a Barium Titanate Glass-Ceramic,” Journal of the American Ceramic Society, Vol. 81, No. 4, 1998, pp. 979-987.doi:10.1111/j.1151-2916.1998.tb02435.x
[9] H. F. Cheng, “Structural and Optical Properties of Laser Deposited Ferroelectric (Sr0.2Ba0.8)TiO3 Thin Films,” Journal of Applied Physics, Vol. 79, No. 10, 1996, pp. 7965-7971. doi:10.1063/1.362346
[10] D. M. Tahan, A. Safari and L. C. Klein, “Synthesis and Processing Characteristics of Ba0.65Sr0.35TiO3 Powders from Catecholate Precursors,” Journal of the American Ceramic Society, Vol. 79, No. 6, 1996, pp. 1593-1598.doi:10.1111/j.1151-2916.1996.tb08769.x
[11] O. P. Thakur, C. Prakash and D. Agrawal, “Dielectric Behavior of Ba0.95Sr0.05TiO3 Ceramics Sintered by Microwave,” Materials Science and Engineering: B, Vol. 96, No. 3, 2002, pp. 221-225.doi:10.1016/S0921-5107(02)00159-9
[12] N. J. Ali and S. J. Milne, “Synthesis and Processing Characteristics of Ba0.65Sr0.35TiO3 Powders from Catecholate Precursors,” Journal of the American Ceramic Society, Vol. 76, No. 9, 1993, pp. 2321-2326.doi:10.1111/j.1151-2916.1993.tb07771.x
[13] J. W. Liou and B. S. Chiou, “Effect of Direct-Current Biasing on the Dielectric Properties of Barium Strontium Titanate,” Journal of the American Ceramic Society, Vol. 80, No. 12, 1997, pp. 3093-3099.doi:10.1111/j.1151-2916.1997.tb03237.x
[14] O. P. Thakur, “Crystallization, Microstructure and Dielectric Behavior of Strontium Titanate Borosilicate Glass Ceramics with Some Additives,” Ph.D. Thesis, Banaras Hindu University, Varanasi, 1997.
[15] C. R. Gautam, D. Kumar, O. Parkash, O. P. Thakur and C. Prakash, “Dielectric Behavior in the Glass Ceramic System [(Pb1-xSrx)O·TiO2]-[2SiO2·B2O3]-[7BaO]-[3K2O] with Addition of La2O3(0.0 x 0.5 ),” International Symposium of Research Students on Material Science and Engineering, Chennai, 20-22 December 2004, pp. 1-11.
[16] O. P. Thakur, D. Kumar, O. Parkash and L. Pandey, “Crystallization, Microstructure Development and Dielectric Behaviour of Glass Ceramics in the system [SrO-TiO2]-[2SiO2·B2O3]-La2O3,” Journal of Materials Science, Vol. 37, No. 12, 2002, pp. 2597-2606.doi:10.1023/A:1015476631462
[17] D. Kumar, C. R. Gautam and O. Parkash, “Preparation and Dielectric Characterization of Ferroelectric (PbxSr1?x)TiO3 Glass Ceramics Doped with La2O3,” Applied Physics Letters, Vol. 89, No. 11, 2006, pp.12908-12910.
[18] C. R. Gautam, D. Kumar and O. Parkash, “Crystallization Behavior and Microstructural Analysis of Strontium Rich (PbxSr1?x)TiO3 Glass Ceramics in Presence of La2O3,” Advances in Materials Science and Engineering, Vol. 2011, 2011, pp. 1-9. doi:10.1155/2011/402376
[19] C. R. Gautam, D. Kumar and O. Parkash, “Crystallization Behavior and Microstructural Analysis of Lead-Rich (PbxSr1?x)TiO3 Glass Ceramics Containing 1 Mole% La2O3,” Advances in Materials Science and Engineering, Vol. 2011, 2011, pp. 1-12. doi:10.1155/2011/402376
[20] H. E. Kissinger, “Variation of Peak Temperatures with Heating Rate in Differential Thermal Analysis,” Journal of Research of the National Bureau of Standards, Vol. 57, No. 4, 1956, pp. 217-221.
[21] K. Yao, L. Zhang, X. Yao and W. Zhu, “Controlled Crystallisation in Lead Zirconate Titanate Glass-Ceramics Prepared by the Sol-Gel Process,” Journal of the American Ceramic Society, Vol. 81, No. 6, 1998, pp. 1571-1576.doi:10.1111/j.1151-2916.1998.tb02518.x
[22] V. Kumar, T. A. Asha, K. Sivanandan, P. V. Divya and K. P. Rema, “Sol-Gel Synthesis of PZT-Glass Nanocomposites Using a Simple System and Characterization,” International Journal of Applied Ceramic Technology, Vol. 3, No. 5, 2006, pp. 345-352.doi:10.1111/j.1744-7402.2006.02101.x
[23] S.-I. Jang, B.-C. Choi and H. M. Jang, “Phase Formation Kinetics of Xerogel and Electrical Properties of SolGel-Derived BaxSr1-xTiO3 Thin Films,” Journal of Materials Research, Vol. 12, No. 5, 1997, pp. 1327-1334.doi:10.1557/JMR.1997.0181
[24] P. V. Divya and V. Kumar, “Crystallization Studies and Properties of (Ba1-xSrx)TiO3 in Borosilicate Glass,” Journal of the American Ceramic Society, Vol. 90, No. 2, 2007, pp. 472-476.doi:10.1111/j.1551-2916.2006.01452.x
[25] J. A. Augis and J. E. Bennet, “Calculation of the Avrami Parameters for Heterogeneous Solid-State Reaction Using a Modification of the Kissinger Method,” Journal Of Thermal Analysis and Calorimetry, Vol. 13, No. 2, 1978, pp. 283-292. doi:10.1007/BF01912301
[26] P. V. Divya, G. Vignesh and V. Kumar, “Crystallization Studies and Dielectric Properties of (Ba0.7Sr0.3)TiO3 in Barium Aluminosilicate Glass,” Journal of Physics D: Applied Physics, Vol. 40, No. 24, 2007, pp. 7804-7810.doi:10.1088/0022-3727/40/24/032
[27] C. S. Ray, Q. Yang, H. Wein-Hai and D. E. Day, “Surface and Internal Crystallization in Glasses as Determined by Differential Thermal Analysis,” Journal of the American Ceramic Society, Vol. 79, No. 12, 1996, pp. 3155-3160.doi:10.1111/j.1151-2916.1996.tb08090.x
[28] E. P. Gorzkowski, M.-J. Pan, B. A. Bender and C. C. M. Wu, “Effect of Additives on the Crystallization Kinetics of Barium Strontium Titanate Glass-Ceramics,” Journal of the American Ceramic Society, Vol. 91, No. 4, 2008, pp. 1065-1069. doi:10.1111/j.1551-2916.2007.02254.x
[29] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review, Vol. 56, No. 10, 1939, pp. 978-982. doi:10.1103/PhysRev.56.978
[30] H.-L. Wang, “Structure and Dielectric Properties of Perovskite Barium Titanate (BaTiO3),” Partial Fulfillment of Course Requirement for MatE 115, San Jose State University, San Jose, 2002.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.