New directions in cardiac stem cell therapy: An update for clinicians

Abstract

The emergence of cardiac stem cell therapy can be traced to late 2001, when studies in small animal models of myocardial infarction suggested that stem cells could engraft, proliferate, and regenerate myo-cardium. Subsequent animal laboratory studies showed improved cardiac function, perfusion and survival compared to controls (Figure 1). Within two years, the first clinical trials of stem cell therapy began to appear, and we now have several trials of intracoronary infusion of bone marrow cells with more than one year follow-up. Although this clinical therapy has proven to be safe, the magnitude of improvement in objective measures like ejection fraction has been modest, and the therapy has not entered clinical practice. In the absence of a large prospective randomized trial, the field has moved back to the laboratory. This manuscript aims to provide clinicians with a broad overview of this complex field by briefly reviewing the existing status of clinical myocardial regeneration therapy, then describing selected examples from the laboratory research approaches that may provide a platform for new and potentially increasingly effective clinical strategies.

Share and Cite:

Singh, S. , Kashif, M. , Bhambi, N. , Makkar, R. and Forrester, J. (2012) New directions in cardiac stem cell therapy: An update for clinicians. World Journal of Cardiovascular Diseases, 2, 193-200. doi: 10.4236/wjcd.2012.23032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Schachinger, V., Erbs, S., Elsasser, A., et al. (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: Final 1-year results of the REPAIR-AMI trial. European Heart Journal, 27, 2775-2783. doi:10.1093/eurheartj/ehl388
[2] Schachinger, V., Erbs, S., Elsasser, A., et al. (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1210-1221. doi:10.1056/NEJMoa060186
[3] Lunde, K., Solheim, S., Aakhus, S., et al. (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1199-1209. doi:10.1056/NEJMoa055706
[4] Janssens, S., Dubois, C., Bogaert, J., et al. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367, 113- 121. doi:10.1016/S0140-6736(05)67861-0
[5] Chen, S.L., Fang, W.W., Ye, F., et al. (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92-95. doi:10.1016/j.amjcard.2004.03.034
[6] Lipinski, M.J., Biondi-Zoccai, G.G., Abbate, A., et al. (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761-1767. doi:10.1016/j.jacc.2007.07.041
[7] Lunde, K., Solheim, S., Forfang, K., et al. (2008) Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: Safety, clinical outcome, and serial changes in left ventricular function during 12-months’ follow-up. Journal of the American College of Cardiology, 51, 674-676. doi:10.1016/j.jacc.2007.10.032
[8] Meyer, G.P., Wollert, K.C., Lotz, J., et al. (2006) Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113, 1287-1294. doi:10.1161/CIRCULATIONAHA.105.575118
[9] Yousef, M., Schannwell, C.M., Kostering, M., et al. (2009) The BALANCE Study: Clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53, 2262-2269. doi:10.1016/j.jacc.2009.02.051
[10] Hale, S.L., Dai, W., Dow, J.S., et al. (2008) Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes: A quantitative assessment. Life Sciences, 83, 511-515. doi:10.1016/j.lfs.2008.07.020
[11] Li, Z., Lee, A., Huang, M., et al. (2009) Imaging survival and function of transplanted cardiac resident stem cells. Journal of the American College of Cardiology, 53, 1229- 1240. doi:10.1016/j.jacc.2008.12.036
[12] Forrester, J.S. and Libby, P. (2007) The inflammation hypothesis and its potential relevance to statin therapy. American Journal of Cardiology, 99, 732-738. doi:10.1016/j.amjcard.2006.09.125
[13] Cook, S.A., Matsui, T., Li, L., et al. (2002) Transcriptional effects of chronic Akt activation in the heart. Journal of Biological Chemistry, 277, 22528-22533. doi:10.1074/jbc.M201462200
[14] Klopsch, C., Furlani, D., Gabel, R., et al. (2009) Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. Journal of Cellular and Molecular Medicine, 13, 664-679. doi:10.1111/j.1582-4934.2008.00546.x
[15] Hahn, J.Y., Cho, H.J., Kang, H.J., et al. (2008) Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 51, 933-943. doi:10.1016/j.jacc.2007.11.040
[16] Laflamme, M.A., Chen, K.Y., Naumova, A.V., et al. (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015-1024. doi:10.1038/nbt1327
[17] Pasha, Z., Wang, Y., Sheikh, R., et al. (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascular Research, 77, 134-142. doi:10.1093/cvr/cvm025
[18] Hu, X., Yu, S.P., Fraser, J.L., et al. (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 135, 799-808. doi:10.1016/j.jtcvs.2007.07.071
[19] Bartunek, J., Croissant, J.D., Wijns, W., et al. (2007) Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology—Heart and Circulatory Physiology, 292, H1095-H1104. doi:10.1152/ajpheart.01009.2005
[20] Gnecchi, M., He, H., Melo, L.G., et al. (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells, 27, 971-979. doi:10.1002/stem.12
[21] Haider, H., Jiang, S., Idris, N.M., et al. (2008) IGF-1- overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103, 1300-1308. doi:10.1161/CIRCRESAHA.108.186742
[22] Li, W., Ma, N., Ong, L.L., et al. (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118-2127. doi:10.1634/stemcells.2006-0771
[23] Simpson, D., Liu, H., Fan, T.H., et al. (2007) A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells, 25, 2350-2357. doi:10.1634/stemcells.2007-0132
[24] Takehara, N., Tsutsumi, Y., Tateishi, K., et al. (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. Journal of the American College of Cardiology, 52, 1858- 1865. doi:10.1016/j.jacc.2008.06.052
[25] Davis, M.E., Hsieh, P.C., Takahashi, T., et al. (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences USA, 103, 8155-8160. doi:10.1073/pnas.0602877103
[26] Padin-Iruegas, M.E., Misao, Y., Davis, M.E., et al. (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120, 876-887. doi:10.1161/CIRCULATIONAHA.109.852285
[27] Wang, F., Li, Z., Tamama, K., et al. (2009) Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules, 10, 2609-2618. doi:10.1021/bm900541u
[28] Shim, W.S., Jiang, S., Wong, P., et al. (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochemical and Biophy- sical Research Communications, 324, 481-488. doi:10.1016/j.bbrc.2004.09.087
[29] Laflamme, M.A. and Murry, C.E. (2005) Regenerating the heart. Nature Biotechnology, 23, 845-856. doi:10.1038/nbt1117
[30] Scorsin, M., Hagege, A.A., Marotte, F., et al. (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation, 96, II188-II193.
[31] Smith, R.R., Barile, L., Cho, H.C., et al. (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896-908. doi:10.1161/CIRCULATIONAHA.106.655209
[32] Oh, H., Bradfute, S.B., Gallardo, T.D., et al. (2003) Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences USA, 100, 12313- 12318. doi:10.1073/pnas.2132126100
[33] Ott, H.C., Matthiesen, T.S., Brechtken, J., et al. (2007) The adult human heart as a source for stem cells: Repair strategies with embryonic-like progenitor cells. Nature Clinical Practice Cardiovascular Medicine, 4, S27-S39. doi:10.1038/ncpcardio0771
[34] Beltrami, A.P., Barlucchi, L., Torella, D., et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763-776. doi:10.1016/S0092-8674(03)00687-1
[35] Tang, X.L., Rokosh, G., Sanganalmath, S.K., et al. (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30- day-old infarction. Circulation, 121, 293-305. doi:10.1161/CIRCULATIONAHA.109.871905
[36] Rota, M., Padin-Iruegas, M.E., Misao, Y., et al. (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107-116. doi:10.1161/CIRCRESAHA.108.178525
[37] Dawn, B., Stein, A.B., Urbanek, K., et al. (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences USA, 102, 3766-3771. doi:10.1073/pnas.0405957102
[38] Makkar, R.R., Smith, R.R., Cheng, K., et al. (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet, 13, 13.
[39] Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 108, 407- 414.
[40] Rufaihah, A.J., Haider, H.K., Heng, B.C., et al. (2010) Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regenerative Medicine, 5, 231-244. doi:10.2217/rme.09.83
[41] Nelson, T.J., Martinez-Fernandez, A., Yamada, S., et al. (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408-416. doi:10.1161/CIRCULATIONAHA.109.865154
[42] Yu, J., Vodyanik, M.A., Smuga-Otto, K., et al. (2007) In- duced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920. doi:10.1126/science.1151526
[43] Behfar, A., Crespo-Diaz, R., Nelson, T.J., et al. (2010) Stem cells: Clinical trials results the end of the beginning or the beginning of the end? Cardiovascular & Hematological Disorders Drug Targets, 10, 186-201.
[44] Strauer, B.E., Brehm, M., Zeus, T., et al. (2002) Repair of infarcted myocardium by autologous intracoronary mono-nuclear bone marrow cell transplantation in humans. Circulation, 106, 1913-1918. doi:10.1161/01.CIR.0000034046.87607.1C
[45] Bartunek, J., Vanderheyden, M., Vandekerckhove, B., et al. (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation, 112, I178-1183.
[46] Li, Z.Q., Zhang, M., Jing, Y.Z., et al. (2007) The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). International Journal of Cardiology, 115, 52-56. doi:10.1016/j.ijcard.2006.04.005
[47] Kang, H.J., Lee, H.Y., Na, S.H., et al. (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: The MAGIC Cell-3-DES randomized, controlled trial. Circulation, 114, I145-I151. doi:10.1161/CIRCULATIONAHA.105.001107
[48] Ge, J., Li, Y., Qian, J., et al. (2006) Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart, 92, 1764-1767. doi:10.1136/hrt.2005.085431
[49] Meluzin, J., Mayer, J., Groch, L., et al. (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: The effect of the dose of transplanted cells on myocardial function. American Heart Journal, 152, 975e9-975e15.
[50] Makkar, R.R., Price, M.J., Lill, M., et al. (2005) Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 10, 225-233. doi:10.1177/107424840501000403

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.