Synthesis and Characterisations of TiO2 Coated Multiwalled Carbon Nanotubes/Graphene/Polyaniline Nanocomposite for Supercapacitor Applications

Abstract

Nowadays with ever increasing demand of energy, developing of alternative power sources is an important issue all over the world. In this respect we have prepared nanocomposites based on metal oxide (titanium oxide) coated multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) with graphene and without graphene and studied their electrochemical performance. The formation of the polymer in the nanocomposites was confirmed by the Fourier Transform Infrared Spectroscopy (FTIR) study. The morphological characterisations were carried out by the Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). To characterize the prepared nanocomposites electrode, a cyclic voltammetry test for measuring specific capacitance, and an impedance test were conducted. The highest value of specific capacitance obtained for the TiO2 coated MWCNTs/PANI nanocomposite was 443.57 F/g at 2 mV/s scan rate. Upon addition of graphene nanosheet to the TiO2 coated MWCNTs in a weight ratio of (9:1) the specific capacitance value increased to 666.3 F/g at the same scan rate, also resulting in an increase in energy density and power density.

Share and Cite:

D. Ghosh, S. Giri, S. Kalra and C. Das, "Synthesis and Characterisations of TiO2 Coated Multiwalled Carbon Nanotubes/Graphene/Polyaniline Nanocomposite for Supercapacitor Applications," Open Journal of Applied Sciences, Vol. 2 No. 2, 2012, pp. 70-77. doi: 10.4236/ojapps.2012.22009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. E. Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Kluwer Academic/Plenum, New York, 1999
[2] P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature Materials, Vol. 7, No. 11, 2008, pp. 845-854. doi:10.1038/nmat2297
[3] S. Sarangpani, B. V. Tilak and C. P. Chen, “Materials for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 143, No. 11, 1996, pp. 3791-3799. doi:10.1149/1.1837291
[4] K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae and Y. H. Lee, “High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole,” The Electrochemical Society, Vol. 149, No. 6, 2002, pp. A1058-A1062. doi:10.1149/1.1491235
[5] Z. A. Hu, Y. L. Xie, Y. X. Wang, L. P. Mo, Y. Y. Yang, and Z. Y. Zhang, “Polyaniline/SnO2 Nanocomposite for Supercapacitor Applications,” Materials Chemistry and Physics, Vol. 114, No. 2-3, 2009, pp. 990-995. doi:10.1016/j.matchemphys.2008.11.005
[6] R. N. Reddy and R. G. Reddy, “Sol-Gel MnO2 as an Elec- trode Material for Electrochemical Capacitors,” Journal of Power Sources, Vol. 124, No. 1, 2003, pp. 330-337. doi:10.1016/S0378-7753(03)00600-1
[7] W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami and Y. Takasu, “Evaluation of the Pseudocapacitance in RuO2 with a RuO2/GC thin Film Electrode,” Electrochimica Acta, Vol. 49, No. 2, 2004, pp. 313-320. doi:10.1016/j.electacta.2003.08.013
[8] F. B. Zhang, Y. K.Zhou and H. L. Li, “Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor,” Materials Chemistry and Physics, Vol. 83, No. 2-3, 2004, pp. 260-264. doi:10.1016/j.matchemphys.2003.09.046
[9] A. L. M. Reddy and S. Ramaprabhu, “Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes,” Journal of Physical Chemistry C, Vol. 111, No. 21, 2007, pp. 7727-7734. doi:10.1021/jp069006m
[10] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, “Graphene and Nanostructured MnO2 Composite Elec- trodes for Supercapacitors,” Carbon, Vol. 49, No. 9, 2011, pp. 2917-2925. doi:10.1016/j.carbon.2011.02.068
[11] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casa- longue and H. Dai, “Advanced Asymmetrical Superca- pacitors Based on Graphene Hybrid Materials,” Nano Research, Vol. 4, No. 8, 2011, pp. 729-736. doi:10.1007/s12274-011-0129-6
[12] A. Burke, “Ultracapacitors: Why, How, and Where Is the Technology,” Journal of Power Sources, Vol. 91, No. 1, 2000, pp. 37-50. doi:10.1016/S0378-7753(00)00485-7
[13] J. Chmiola, G. Yushin,Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, “Anomalous Increase in Carbon Ca- pacitance at Pore Sizes Less than 1 Nanometer,” Science, Vol. 313 No. 5794, 2006, pp. 1760-1763. doi:10.1126/science.1132195
[14] H. L. Wang, Q. L. Hao, X. J. Yang, L. D. Lu and X. Wang, “Graphene Oxide Doped Polyaniline for Supercapacitors,” Electrochemistry Communications, Vol. 11, No. 6, 2009, pp. 1158-1161. doi:10.1016/j.elecom.2009.03.036
[15] G. Lota, T. A. Centeno, E. Frackowiak and F. Stoeckli, “Improvement of the Structural and Chemical Properties of a Commercial Activated Carbon for Its Application in Electrochemical Capacitors,” Electrochimica Acta, Vol. 53, No. 5, 2008, pp. 2210-2216. doi:10.1016/j.electacta.2007.09.028
[16] J. D. Madden, A. I. Najafabadi and D. T. H. Tan, “To- wards High Power Polypyrrole/Carbon Capacitors,” Synthetic Metals, Vol. 152, No. 1-3, 2005, pp. 129-132. doi:10.1016/j.synthmet.2005.07.094
[17] L. B. Kong, J. Zhang, J. J. An, Y. C. Luo and L. Kang, “MWNTs/PANI composite Materials Prepared by In-Situ Chemical Oxidative Polymerization for Supercapacitor Electrode,” Journal of Materials Science, Vol. 43, No. 10, 2008, pp. 3664-3669. doi:10.1007/s10853-008-2586-1
[18] A. V. Murugan, T. Muraliganth and A. Manthiram, “Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage,” Chemistry of Materials, Vol. 21, No. 21, 2009, pp. 5004-5006. doi:10.1021/cm902413c
[19] C. Bian, A. Yu and H. Wu, “Fibriformpolyaniline/Nano-TiO2 Composite as an Electrode Material for Aqueous Redox Supercapacitors,” Electrochemistry Communications, Vol. 11, No. 2, 2009, pp. 266-269. doi:10.1016/j.elecom.2008.11.026
[20] A. K. Mishra and S. Ramaphrabu, “Functionalized Graphene-Based Nanocomposites for Supercapacitor Application,” The Journal of Physical Chemistry C, Vol. 115, No. 29, 2011, pp. 14006-14013. doi:10.1021/jp201673e
[21] S. M. Yuen, C. C. M. Ma, C. Y. Chuang, Y. H. Hsiao, C. L. Chiang and A. D. Yu, “Preparation, Morphology, Mechanical and Electrical Properties of TiO2 Coated Multi-walled Carbon Nanotube/Epoxy Composites,” Composites: Part A, Vol. 39, No. 1, 2008, pp. 119-125. doi:10.1016/j.compositesa.2007.08.021
[22] S. K. Pillalamarri, F. D. Blum, A.T. Tokuhiro, J. G. Story, and M. F. Bertino, “Radiolytic Synthesis of Polyaniline Nanofibers: A New Templateless Pathway,” Chemistry of Materials, Vol. 17, No. 2, 2005, pp. 227-229. doi:10.1021/cm0488478
[23] T. C. Girija and M. V. Sangaranarayanan, “Polyaniline-Based Nickel Electrodes for Electrochemical Superca- pacitors—Influence of Triton X-100,” Journal of Power Sources, Vol. 159, No. 2, 2006, pp. 1519-1526. doi:10.1016/j.jpowsour.2005.11.078
[24] Y. Qiao, C. M. Li, S. J. Bao and Q. L. Bao, “Carbon Nanotube/Polyaniline Composite as Anode Material for Microbial Fuel Cells,” Journal of Power Sources, Vol. 170, No. 1, pp. 79-84. doi:10.1016/j.jpowsour.2007.03.048
[25] P. M. Kumar, S. Badrinarayanan and M. Sastry, “Nano- crystalline TiO2 Studied by Optical, FTIR and X-Ray Photoelectron Spectroscopy: Correlation to Presence of Surface States,” Thin Solid Films, Vol. 358, No. 1-2, 2000, pp. 122-130. doi:10.1016/S0040-6090(99)00722-1
[26] Y. Zhao, Y. Hu, Y. Li, H. Zhang, S. Zhang, L. Qu, G. Shi and L. Dai “Super-Long Aligned TiO2/Carbon Nanotube Arrays,” Nanotechnology, Vol. 21, No. 50, 2010, p. 505702. doi:10.1088/0957-4484/21/50/505702
[27] Z. Fan, M. Xie, Xi Jin, J. Yan and T. Wei, “Characteris- tics and Electrochemical Performances of Supercapacitors Using Double-Walled Carbon Nanotube/δ-MnO2 Hybrid Material Electrodes,” Journal of Electroanalytical Chemistry, Vol. 659, No. 2, 2011, pp. 191-195. doi:10.1016/j.jelechem.2011.05.025
[28] F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte and J. Bisquert, “Cyclic Voltammetry Studies of Nano- porous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte,” The Journal of Physical Chemistry B, Vol. 107, No. 3, 2003, pp. 758-768. doi:10.1021/jp0265182
[29] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang and F. Wei, “Preparation of a Graphene Nanosheet/Polyani- line Composite with High Specific Capacitance,” Carbon, Vol. 48, No. 2, 2010, pp. 487-493. doi:10.1016/j.carbon.2009.09.066
[30] M. Ates and A. S. Sarac, “Electrochemical Impedance Spectroscopic Study of Polythiophenes on Carbon Materials,” Polymer Plastics Technology and Engineering, Vol. 50, No. 11, 2011, pp. 1130-1148. doi:10.1080/03602559.2011.56630

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.