Review Paper: Challenges and Limitations in Studying the Shrink-Swell and Crack Dynamics of Vertisol Soils

Abstract

The need to study the shrink-swell and crack properties of vertic soils has long been recognized given their dynamics in time and space, which modifies the physical properties that impact water and air movement in the soil, flow of water into the subsoil and ground water, and generally alter the hydrology of vertic soils. Measurement of crack properties has been made by numerous researchers with the purpose to understand and quantify the spatial and temporal dynamics of shrinking and swelling and the associated formation of cracks. These crack properties, which are important in modifying hydrology of soils are: width, length, depth and orientation of soil’s cracks. To better understand the hydrology of vertic soils and incorporate crack properties into hydrologic simulation models, several techniques have been developed to measure crack properties. However, little attention is given to evaluate both the advantages and the limitations associated with these techniques. Thus, the purpose of this review is to highlight challenges and limitations that have been used or might be used to measure cracking in vertic soils.

Share and Cite:

T. Dinka and R. Lascano, "Review Paper: Challenges and Limitations in Studying the Shrink-Swell and Crack Dynamics of Vertisol Soils," Open Journal of Soil Science, Vol. 2 No. 2, 2012, pp. 82-90. doi: 10.4236/ojss.2012.22012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. E. Coulombe, L. P. Wilding and J. B. Dixon, “Overview of Vertisols: Characteristics and Impacts on Society,” Advanced Agronomy, Vol. 57, No. C, 1996, pp. 289- 375. doi:10.1016/S0065-2113(08)60927-X
[2] Soil Survey Staff, “Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. Soil Survey Investigations Report No. 42,” United States Government Printing Office, Washington DC, 1996.
[3] W. A. Blokhuis, “Vertisols,” In: R. Lal, Ed., Encyclopedia of Soil Science, Second Edition, Taylor and Francis, Boca Raton, 2006, pp. 1830-1840.
[4] J. G. Arnold, P. M. Allen, R. Muttiah and G. Bernhardt, “Automated Base Flow Separation and Recession Analysis Techniques,” Ground Water, Vol. 33, No. 6, 1995, pp. 1010-1018. doi:10.1111/j.1745-6584.1995.tb00046.x
[5] K. K. Bandyopadhyay, M. Mohanty, D. K. Painuli, A. K. Misra, K. M. Hati, K. G. Mandal, P. K. Ghosh, R. S. Chaudhary and C. L. Acharya, “Influence of Tillage Practices and Nutrient Management on Crack Parameters in a Vertisol of Central India,” Soil Tillage Research, Vol. 71, No. 2, 2003, pp. 133-142. doi:10.1016/S0167-1987(03)00043-6
[6] J. G. Arnold, K. N. Potter, K. W. King and P. M. Allen, “Estimation of Soil Cracking and the Effect on Surface Runoff in a Texas Blackland Prairie Watershed,” Hydrological Processes, Vol. 19, No. 3, 2005, pp. 589-603. doi:10.1002/hyp.5609
[7] J. J. B. Bronswijk, “Relation Between Vertical Soil Movements and Water-content Changes in Cracking Clays,” Soil Science Society of American Journal, Vol. 55, No. 5, 1991, pp. 1220-1226. doi:10.2136/sssaj1991.03615995005500050004x
[8] A. Sz. Kishné, C. L .S. Morgan, Y. Ge and W. L. Miller, “Antecedent Soil Moisture Affecting Surface Cracking of a Vertisol in Field Conditions,” Geoderma, Vol. 157, No. 3-4, 2010, pp. 109-117. doi:10.1016/j.geoderma.2010.03.020
[9] A. Sz. Kishné, C. L. S. Morgan and W. L. Miller, “Vertisol Crack Extent Associated with Gilgai and Soil Moisture in the Texas Gulf Coast Prairie,” Soil Science Society of American Journal, Vol. 73, No. 4, 2009, pp. 1221- 1230. doi:10.2136/sssaj2008.0081
[10] A. R. Mitchell, “Soil Surface Shrinkage to Estimate Profile Soil Water,” Irrigation Science, Vol. 12, No. 1, 1991, pp. 1-6. doi:10.1007/BF00190702
[11] P. A. Olsen, and L. E. Haugen, “A New Model of the Shrinkage Characteristic Applied to some Norwegian soils,” Geoderma, Vol. 83, No. 1-2, 1998, pp. 67-81. doi:10.1016/S0016-7061(97)00145-6
[12] S. E. Davidson and J. B. Page, “Factors Influencing Swelling and Shrinking in Soils,” Soil Science Society of American Journal, Vol. 20, No. 3, 1956, pp. 320-324. doi:10.2136/sssaj1956.03615995002000030007x
[13] R. Dudal and H. Eswaran, “Distribution, Properties, and Classification of Vertisols,” In: L. P. Wilding and R. Puentes, Eds., Publication Soil Management Support Services, US Department of Agriculture, Natural Resources Conservation Service, Washington DC, 1988, pp. 1-22.
[14] A. Komornik, “Proceedings of the Second International Research and Engineering Conference on Expansive Clay Soils,” Soil Science Society of American Journal, Vol. 70, 1969, pp. 1983-1990.
[15] H. S. Lin, K. J. Mclnnes, L. P., Wilding and C. T. Hallmark, “Macroporosity and Initial Moisture Effects on Infiltration Rates in Vertisols and Vertic Intergrades,” Soil Science, Vol. 163, No. 1, 1998, pp. 2-8. doi:10.1097/00010694-199801000-00002
[16] C. W. Smith, A. Hadas, J. Dan and H. Koyumdjisky, “Shrinkage and Atterberg Limits in Relation to Other Properties of Principal Soil Types in Israel,” Geoderma, Vol. 35, No. 1, 1985, pp. 47-65. doi:10.1016/0016-7061(85)90055-2
[17] P. J. Thomas, J. C. Baker, L. W. Zelazny and D. R. Hatch, “Relationship of Map Unit Variability to Shrink-Swell Indicators,” Soil Science Society of American Journal, Vol. 64, No. 1, 2000, pp. 262-268. doi:10.2136/sssaj2000.641262x
[18] R. Vaught, K. R. Brye and D. M. Miller, “Relationships among Coefficient of Linear Extensibility and Clay Fractions in Expansive, Stoney Soils,” Soil Science Society of American Journal, Vol. 70, No. 6, 2006, pp. 1983-1990. doi:10.2136/sssaj2006.0054
[19] L. P. Wilding and D. Tessier, “Genesis of Vertisols: Shrink-Swell Phenomena,” In: L. P. Wilding and R. Puentes, Eds., Vertisols: Their Distribution, Properties, Classification, and Management, Texas A&M University Printing Center, College Station, 1998, pp. 55-79.
[20] S. Azam, S. Abduljauwad, N. Al-Shayea and O. S. B. Al-Amoudi, “Effects of Calcium Sulfate on Swelling Potential of Expansive Clay,” Soil Science Society of American Journal, Vol. 70, No. 6, 2000, pp. 1983-1990.
[21] P. J. Thomas, J. C. Baker and L.W. Zelazny, “An Expansive Soil Index for Predicting Shrink-Swell Potential,” Soil Science Society of American Journal, Vol. 64, No. 1, 2000, pp. 268-274. doi:10.2136/sssaj2000.641268x
[22] H. Li, R. J. Lascano, J. Booker, L. T. Wilson and K. F. Bronson, “Nitrogen and Cotton Lint Yield Variability in a Heterogeneous Soil at a Landscape Scale,” Soil Tillage Research, Vol. 58, No. 3-4, 2001, pp. 245–258. doi:10.1016/S0167-1987(00)00172-0
[23] H. Li, R. J. Lascano, J. Booker, L. T. Wilson, K. F. Bronson and E. Segarra, “State-space Description of Field Heterogeneity: Water and Nitrogen Use in Cotton,” Soil Science Society of American Journal, Vol. 66, No. 2, 2002, pp. 585-595. doi:10.2136/sssaj2002.0585
[24] A. R. Mitchell and M. T. van Genuchten, “Shrinkage of Bare and Cultivated Soil,” Soil Science Society of American Journal, Vol. 56, No. 4, 1992, pp. 1036-1042. doi:10.2136/sssaj1992.03615995005600040006x
[25] W. M. Cornelis, J. Corluy, H. Medina, J. Díaz, R. Hartmann, M. Van Meirvenne and M. E. Ruiz, “Measuring and Modelling the Soil Shrinkage Characteristic Curve,” Geoderma, Vol. 137, No. 1-2, 2006, pp. 179-191. doi:10.1016/j.geoderma.2006.08.022
[26] W. B. Haines, “The Volume-Changes Associated with Variations of Water Content in Soil,” Journal of Agricultural Science, Vol. 13, No. 3, 1923, pp. 296-310. doi:10.1017/S0021859600003580
[27] B. A. Keen, “The Physical Properties of the Soil,” Quarterly Journal of the Meteorological Society, Vol. 58, No. 247, 1931, pp. 490-491.
[28] G. Stirk, “Some Aspects of Soil Shrinkage and the Effect of Cracking upon Water Entry into the Soil,” Australian Journal of Agricultural Research, Vol. 5, No. 2, 1954, pp. 279-296. doi:10.1071/AR9540279
[29] A. U. R. Tariq and D. S. Durnford, “Analytical Volume Change Model for Swelling Clay Soils,” Soil Science Society of American Journal, Vol. 57, No. 5, 1993, pp. 1183-1187. doi:10.2136/sssaj1993.03615995005700050003x
[30] D. F. Yule and J. T. Ritchie, “Soil Shrinkage Relationships of Texas Vertisols: I. Small Cores,” Soil Science Society of American Journal, Vol. 44, No. 6, 1980, pp. 1285-1291. doi:10.2136/sssaj1980.03615995004400060031x
[31] D. F. Yule and J. T. Ritchie, “Soil Shrinkage Relationships of Texas Vertisols: II. Large cores,” Soil Science Society of American Journal, Vol. 44, No. 6, 1980, pp. 1291-1295. doi:10.2136/sssaj1980.03615995004400060032x
[32] J. U. Baer and S. H. Anderson, “Landscape Effects on Desiccation Cracking in an Aqualf,” Soil Science Society of American Journal, Vol. 61, No. 5, 1997, pp. 1497- 1502. doi:10.2136/sssaj1997.03615995006100050029x
[33] J. J. B. Bronswijk, “Shrinkage Geometry of a Heavy Clay Soil at Various Stresses,” Soil Science Society of American Journal, Vol. 54, No. 5, 1990, pp. 1500-1502. doi:10.2136/sssaj1990.03615995005400050048x
[34] X. Peng, R. Horn, S. Peth and A. Smucker, “Quantification of Soil Shrinkage in 2D by Digital Image Processing of Soil Surface,” Soil Tillage Research, Vol. 91, No. 1-2, 2006, pp. 173-180. doi:10.1016/j.still.2005.12.012
[35] I. Daniells, “Degradation and Restoration of Soil Structure in a Cracking Grey Clay used for Cotton Production,” Australian Journal of Soil Research, Vol. 27, No. 2, 1989, pp. 455-469. doi:10.1071/SR9890455
[36] G. D. Aitchenson and J. W. Holmes, “Aspects of Swelling in the Soil Profile,” Australian Journal Applied Science, Vol. 4, 1953, pp. 244-259.
[37] A. Samou?lian, I. Cousin, G. Richard, A. Tabbagh and A. Bruand, “Electrical Resistivity Imaging for Detecting Soil Cracking at the Centimetric Scale,” Soil Science Society of American Journal, Vol. 67, No. 5, 2003, pp. 1319- 1326. doi:10.2136/sssaj2003.1319
[38] A. Samou?lian, G. Richard, I. Cousin, R. Guerin, A. Bruand and A. Tabbagh, “Three-Dimensional Crack Monitoring by Electrical Resistivity Tomography,” European Journal of Soil Science, Vol. 55, No. 4, 2004, pp. 751-762. doi:10.1111/j.1365-2389.2004.00632.x
[39] L. Rivera, “Comparing Methods of Estimating Crack Volume in Shrink-Swell Soils,” A Senior Scholars Thesis, Texas A&M University, College Station, 2008.
[40] B. Velde, “Structure of Surface Cracks in Soil and Muds,” Geoderma, Vol. 93, No. 1-2, 1999, pp. 101-124. doi:10.1016/S0016-7061(99)00047-6
[41] S. A. Amidu and J. A. Dunbar, “Geoelectric Studies of Seasonal Wetting and Drying of a Texas Vertisol,” Vadose Zone Journal, Vol. 6, No. 3, 2007, pp. 511-523. doi:10.2136/vzj2007.0005
[42] W. L. Miller, A. Sz. Kishné and C. L. S. Morgan, “Vertisol Morphology, Classification, and Seasonal Cracking Patterns in the Texas Gulf Coast Prairie,” Soil Survey Horizons, Vol. 51, 2010, pp. 10-16.
[43] T. L. Deshpande, D. J. Greenland and J. P. Quirk, “Role of Iron Oxide in the Bonding of Soil Particles,” Nature, Vol. 201, No. 4914, 1964, pp. 107-108. doi:10.1038/201107b0
[44] D. L. Rimmer and D. J. Greenland, “Effects of Calcium Carbonate on the Swelling Behaviour of a Soil Clay,” European Journal of Soil Science, Vol. 27, No. 2, 1976, pp. 129-139. doi:10.1111/j.1365-2389.1976.tb01983.x
[45] C. H. Thompson and G. G. Beckmann, “Gilgai in Australian Black Earths and Some of Its Effects on Plants” Tropical Agriculture, Vol. 59, No. 2, 1982, pp. 149-156.
[46] M. J. Knight, “Structural Analysis and Mechanical Origins of Gilgai at Boorook, Victoria, Australia,” Geoderma, Vol. 23, No. 4, 1980, pp. 245-283. doi:10.1016/0016-7061(80)90067-1
[47] Y. M. Cabidoche and H. Ozier-Lafontaine, “THERESA: I. Matric Water Content Measurements through Thickness Variations in Vertisols,” Agricultural Water Management, Vol. 28, No. 2, 1995, pp. 133-147. doi:10.1016/0378-3774(95)01164-E
[48] J. M. Kirby, A. L. Bernardi, A. J. Ringrose-Voase, R. Young and H. Rose, “Field Swelling, Shrinking, and Water Content Change in a Heavy Clay Soil,” Australian Journal Soil Research, Vol. 41, No. 5, 2003, pp. 963-978. doi:10.1071/SR02055
[49] M. Corbeels, R. Hartmann, G. Hofman and O. Van Cleemput, “Field Calibration of a Neutron Moisture Meter in Vertisols,” Soil Science Society of American Journal, Vol. 63, No. 1, 1999, pp. 11-18. doi:10.2136/sssaj1999.03615995006300010003x
[50] S. R. Evett, R. C. Schwartz, J. A. Tolk and T. A. Howell, “Soil Profile Water Content Determination: Spatiotemporal Variability of Electromagnetic and Neutron Probe Sensors in Access Tubes,” Vadose Zone Journal, Vol. 8, No. 4, 2009, pp. 926-941. doi:10.2136/vzj2008.0146
[51] S. R. Evett and J. L. Steiner, “Precision of Neutron Scattering and Capacitance Type Soil Water Content Gauges from Field Calibration,” Soil Science Society of American Journal, Vol. 59, No. 4, 1995, pp. 961-968. doi:10.2136/sssaj1995.03615995005900040001x
[52] S. R. Evett, J. A. Tolk and T. A. Howell, “Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision,” Vadose Zone Journal, Vol. 5, No. 3, 2006, pp. 894-907. doi:10.2136/vzj2005.0149
[53] E. Greacen and C. Hignett, “Sources of Bias in the Field Calibration of a Neutron Meter,” Australian Journal of Soil Research, Vol. 17, No. 3, 1979, pp. 405-415. doi:10.1071/SR9790405
[54] E. Greacen and G. Schrale, “The Effect of Bulk Density on Neutron Meter Calibration,” Australian Journal of Soil Research, Vol. 14, No. 2, 1976, pp. 159-169. doi:10.1071/SR9760159
[55] A. S. Hodgson and K. Y. Chan, “Field Calibration of a Neutron Moisture Meter in a Cracking Grey Clay,” Irrigation Science, Vol. 8, No. 4, 1987, pp. 233-244. doi:10.1007/BF00257508
[56] N. T. Mazahrih, N. Katbeh-Bader, S. R. Evett, J. E. Ayars and T. J. Trout, “Field Calibration Accuracy and Utility of Four Down-hole Water Content Sensors,” Vadose Zone Journal, Vol. 7, No. 3, 2008, pp. 992-1000. doi:10.2136/vzj2008.0001
[57] S. R. Evett, “Neutron Moisture Meters,” In: S. R. Evett, L. K. Heng, P. Moutonnet and M. L. Nguyen, Eds., Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology, IAEA- TCS-30. International Atomic Energy Agency, Vienna, 2008, pp. 39-54.
[58] J. U. Anderson, K. E. Fadul and G. A. O’Connor, “Factors Affecting the Coefficient of Linear Extensibility in Vertisols,” Soil Science Society of American Journal, Vol. 37, No. 2, 1973, pp. 296-299. doi:10.2136/sssaj1973.03615995003700020036x
[59] C. W. Gray and R. Allbrook, “Relationships between Shrinkage Indices and Soil Properties in Some New Zealand soils,” Geoderma, Vol. 108, No. 3-4, 2002, pp. 287- 299. doi:10.1016/S0016-7061(02)00136-2
[60] D. E. McCormack and L. P. Wilding, “Soil Properties Influencing Swelling in Canfield and Geeburg Soils,” Soil Science Society of American Journal, Vol. 39, No. 3, 1975, pp. 496-502. doi:10.2136/sssaj1975.03615995003900030034x
[61] M. J. Reeve, D. G. M. Hall and P. Bullock, “The Effect of Soil Composition and Environmental Factors on the Shrinkage of Some Clayey British soils,” European Journal of Soil Science, Vol. 31, No. 3, 1980, pp. 429-442. doi:10.1111/j.1365-2389.1980.tb02092.x
[62] G. J. Ross, “Relationships of Specific Surface Area and Clay Content to Shrink-Swell Potential of Soils Having Different Clay Mineralogical Compositions,” Canadian Journal of Soil Science, Vol. 58, No. 2, 1978, pp. 159-166. doi:10.4141/cjss78-020
[63] R. B. Grossman, B. R. Brasher, D. P. Franzmeier and J. L. Walker, “Linear Extensibility as Calculated from Natural- Clod Bulk Density Measurements,” Soil Science Society of American Journal, Vol. 32, No. 4, 1968, pp. 570-573. doi:10.2136/sssaj1968.03615995003200040041x
[64] I. Messing and N. J. Jarvis, “Seasonal Variation in Field-Saturated Hydraulic Conductivity in Two Swelling Clay Soils in Sweden,” European Journal of Soil Science, Vol. 41, No. 2, 1990, pp. 229-237. doi:10.1111/j.1365-2389.1990.tb00059.x
[65] T. Sander and H. H. Gerke, “Noncontact Shrinkage Curve Determination for Soil Clods and Aggregates by Three- Dimensional Optical Scanning,” Soil Science Society of American Journal, Vol. 71, No. 5, 2007, pp. 1448-1454. doi:10.2136/sssaj2006.0372
[66] J. Tunny, “The Influence of Saran Resin Coatings on Swelling of Natural Soil Clods,” Soil Science, Vol. 109, No. 4, 1970, pp. 254-256. doi:10.1097/00010694-197004000-00010
[67] P. J. Thomas, “Quantifying Properties and Variability of Expansive Soils in Selected Map Units,” Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 1998.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.