Sensitivity of the C-N Vibration to Solvation in Dicyanobenzenes: A DFT Study

Abstract

Using DFT calculations, we have studied the C-N vibration of dicyanobenzenes in different solvents. The effects of solvent polarity and hydrogen bonding were evaluated. The frequency is decreased by 4 cm–1 when the solvent polarity increases. In the current study, the red shift due to the solvent polarity was underestimated by PCM. For hydrogen bonding, the frequency is increased by 10 cm–1 because of the charge transfer from the lone pair of nitrogen in C≡N to water, which slightly increases the bond strength of C-N. The C-N vibration of dicyanobenzenes is calculated to be sensitive to solvation.

Share and Cite:

A. Gladney, C. Qin and H. Tamboue, "Sensitivity of the C-N Vibration to Solvation in Dicyanobenzenes: A DFT Study," Open Journal of Physical Chemistry, Vol. 2 No. 2, 2012, pp. 117-122. doi: 10.4236/ojpc.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. R. Reimers and L. E. Hall, “The Solvation of Acetonitrile,” Journal of the American Chemical Society, Vol. 121, No. 15, 1999, pp. 3730-3744. doi:10.1021/ja983878n
[2] S. S. Andrews and S. G. Boxer, “Vibrational Stark Effects of Nitriles I. Methods and Experimental Results,” The Journal of Physical Chemistry A, Vol. 104, No. 51, 2000, pp. 11853-11863. doi:10.1021/jp002242r
[3] I. T. Suydam, C. D. Snow, V. S. Pande and S. G. Box, “Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory,” Science, Vol. 313, No. 5784, 2006, pp. 200-204. doi:10.1126/science.1127159
[4] Z. Getahun, C. Huang, T. Wang, B. D. Leon, W. F. DeGrado and F. Gai, “Using Nitrile-Derivatized Amino Acids as Infrared Probes of Local Environment,” Journal of the American Chemical Society, Vol. 125, No. 2, 2003, pp. 405-411. doi:10.1021/ja0285262
[5] M. J. Tucker, Z. Getahun, V. Nanda, W. F. DeGrado and F. Gai, “A New Method for Determining the Local Environment and Orientation of Individual Side Chains of Membrane-Binding Peptides,” Journal of the American Chemical Society, Vol. 126, No. 16, 2004, pp. 5078-5079. doi:10.1021/ja032015d
[6] M. J. Tucker, R. Oyola and F. Gai, “A Novel Fluorescent Probe for Protein Binding and Folding Studies: p-CyanoPhenylalanine,” Biopolymers, Vol. 83, No. 6, 2006, pp. 571-576. doi:10.1002/bip.20587
[7] M. M. Waegele, M. J. Tucker and F. Gai, “5-Cyanotryptophan as an Infrared Probe of Local Hydration Status of Proteins,” Chemical Physics Letters, Vol. 478, No. 4-6, 2009, pp. 249-253. doi:10.1016/j.cplett.2009.07.058
[8] K. C. Schultz, L. Supekova, Y. Ryu, J. Xie, R. Perera and P. G. Schultz, “A Genetically Encoded Infrared Probe,” Journal of the American Chemical Society, Vol. 128, No. 43, 2006, pp. 13984-13985. doi:10.1021/ja0636690
[9] L. N. Silverman, M. E. Pitzer, P. O. Ankomah, S. G. Boxer and E. E. Fenlon, “Vibrational Stark Effect Probes for Nucleic Acids,” The Journal of Physical Chemistry B, Vol. 111, No. 40, 2007, pp. 11611-11613. doi:10.1021/jp0750912
[10] M. D. Watson, X. S. Gai, A. T. Gillies, S. H. Brewer and E. E. Fenlon, “A Vibrational Probe for Local Nucleic Acid Environments: 5-Cyano-2′-Deoxyuridine,” The Journal of Physical Chemistry B, Vol. 112, No. 42, 2008, pp. 13188-13192. doi:10.1021/jp8067238
[11] B. A. Lindquist, D. E. Furse and S. A. Corcelli, “Nitrile Groups as Vibrational Probes of Biomolecular Structure and Dynamics: An Overview,” Physical Chemistry Chemical Physics, Vol. 11, No. 37, 2009, pp. 8119-8132. doi:10.1039/b908588b
[12] M. G. Maienschein-Cline and C. H. Londergan, “The CN Stretching Band of Aliphatic Thiocyanate Is Sensitive to Solvent Dynamics and Specific Solvation,” The Journal of Physical Chemistry A, Vol. 111, No. 40, 2007, pp. 10020-10025. doi:10.1021/jp0761158
[13] S. D. Dalosto, J. M. Vanderkooi and K. A. Sharp, “Vibrational Stark Effects on Carbonyl, Nitrile, and Nitrosyl Compounds Including Heme Ligands, CO, CN, and NO, Studied with Density Functional Theory,” The Journal of Physical Chemistry B, Vol. 108, No. 20, 2004, pp. 6450-6457. doi:10.1021/jp0310697
[14] B. A. Lindquist and S. A. Corcelli, “Nitrile Groups as Vibrational Probes: Calculations of the CN Infrared Absorption Line Shape of Acetonitrile in Water and Tetrahydrofuran,” The Journal of Physical Chemistry B, Vol. 112, No. 20, 2008, pp. 6301-6303. doi:10.1021/jp802039e
[15] B. A. Lindquist, R. T. Haws and S. A. Corcelli, “Optimized Quantum Mechanics/Molecular Mechanics Strategies for Nitrile Vibrational Probes: Acetonitrile and ParaTolunitrile in Water and Tetrahydrofuran,” The Journal of Physical Chemistry B, Vol. 112, No. 44, 2008, pp. 13991-14001. doi:10.1021/jp804900u
[16] J. Choi, K. Oh, H. Lee, C. Lee and M. Cho, “Nitrile and thiocyanate IR Probes: Quantum Chemistry Calculation Studies and Multivariate Least-Square Fitting Analysis,” J. Chem. Phys. 128 (2008) 134506. doi:10.1063/1.2844787
[17] K.-I. Oh, J.-H. Choi, J. Lee, J. Han, H. Lee and M. Cho, “Nitrile and Thiocyanate IR Probes: Molecular Dynamics Simulation Studies,” The Journal of Chemical Physics, Vol. 128, No. 13, 2008, pp. 154504-154511. doi:10.1063/1.2904558
[18] S. Miertu and J. Tomasi, “Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes,” Chemical Physics, Vol. 65, No. 2, 1982, pp. 239-245. doi:10.1016/0301-0104(82)85072-6
[19] S. Kaur, E. S. Eberhardt, A. Doucette, A. Chase and C. Dalby, “Solvent Effects on Barrier to Rotation of Enaminonitriles Using Inversion Transfer 1H NMR Spectroscopy and FTIR Spectroscopy,” The Journal of Organic Chemistry, Vol. 67, No. 11, 2002, pp. 3937-3940. doi:10.1021/jo025516a
[20] A. T. Krummel and M. T. Zanni, “Evidence for Coupling between Nitrile Groups Using DNA Templates: A Promising New Method for Monitoring Structures with Infrared Spectroscopy,” The Journal of Physical Chemistry B, Vol. 112, No. 5, 2008, pp. 1336-1338. doi:10.1021/jp711558a
[21] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Vol. 37, 1988, pp. 785-789. doi:10.1103/PhysRevB.37.785
[22] A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, Vol. 38, 1988, pp. 3098-3100. doi:10.1103/PhysRevA.38.3098
[23] V. A. Rassalov, J. A. Pople, M. Ratner and T. L. Windus, “6-31G? Basis Set for Atoms K through Zn,” The Journal of Chemical Physics, Vol. 109, 1998, pp. 1223-1229. doi:10.1063/1.476673
[24] P. C. Harihan and J. A. Pople, “The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies,” Theoretical Chemistry Accounts, Vol. 28, No. 3, 1973, pp. 213-222. doi:10.1007/bf00533485
[25] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFree and J. A. Pople, “Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements,” The Journal of Chemical Physics, Vol. 77, No. 7, 1982, pp. 3654-3665. doi:10.1063/1.444267
[26] M. J. Frisch et al., “Gaussian 09, Revision B.01,” Gaussian Inc., Pittsburgh, 2009.
[27] J. T. López Navarrete, J. J. Quirante, M. A. G. Aranda, V. Hernández and F. J. Ramirez, “Structure, Polarized Micro-Raman and FT-IR Spectra, and ab Initio Calculations of 1,2-Dicyanobenzene,” The Journal of Physical Chemistry, Vol. 97, No. 41, 1993, pp. 10561-10569. doi:10.1021/j100143a009
[28] J. Janczak and R. Kubiak, “Molecular Structure and Ring Distortions of 1,3-Dicyanobenzene in the Gas Phase and in the Crystal,” Journal of Molecular Structure, Vol. 553, No. 1-3, 2000, pp. 157-166. doi:10.1016/S0022-2860(00)00578-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.