Synthesis and Characterization of Poly Anthranilic Acid Metal Nanocomposites

Abstract

Intrinsically conducting polymer metal nanocomposites were synthesized by polymerising anthranilic acid (PANA) with metal salts like ferric chloride, Zinc oxide and Magnesium oxide by chemical oxidation method. Polyanthranilic acidiron nano composite (PANA-Fe), Polyanthranilic acid-Zinc nano composite(PANA-Zn) and Polyanthranilic acid-magnesium nano composite (PANA-Mg) synthesized were characterised by UV-Visible and FTIR studies. FTIR spectra of polymer-metal nano composites showed peaks in the region between 1690 cm-1 and 1490 cm-1 which corresponds to the deformation in different types of N-H bond. The participation of the -NH group in polymerization was confirmed by the appearance of a peak around 3431 cm-1. Cyclic voltammetric studies revealed the presence of an adherent polymer film on the glassy carbon electrode and showed redox behavior of the polymer metal nanocomposites. The XRD (XRay Diffraction) studies showed a rather more crystalline behaviour of the nano composites and the grain size was calculated using Scherrer’s formula and it was found to be in nano range. SEM (Scanning Electron Microscope) analysis showed a rather mixed crystalline and amorphous behavior. EDAX (Energy Dispersive X Ray Spectroscopy) confirms the incorporation of the metals iron, Zinc and Magnesium in the polymermetal nano composites. The inhibition efficiency of the polymermetal nano composites were calculated for stainless steel in acidic environment using elec-trochemical impedance spectroscopy (EIS) and polarization (Tafel) studies and the prepared PANA-Fe and PANA-Zn nano composites showed effective anti-corrosive behavior on stainless steel in acid medium.

Share and Cite:

I. Sophia, G. Gopu and C. Vedhi, "Synthesis and Characterization of Poly Anthranilic Acid Metal Nanocomposites," Open Journal of Synthesis Theory and Applications, Vol. 1 No. 1, 2012, pp. 1-8. doi: 10.4236/ojsta.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. W. DeBerry, “Modification of the Electrochemical and Corrosion Behaviour of Stainless Steel with an Electroactive Coating,” Journal of the Electrochemical Society, Vol. 132, No. 5, 1985, pp. 1022-1026. doi:10.1149/1.2114008
[2] R. Racicot, R. Brown and S. C. Yang, “Corrosion Protec-tion of Aluminum Alloys by Double-Strand Polyaniline,” Synthetic Metals, Vol. 85, No. 1-3, 1997, pp. 1263-1264. doi:10.1016/S0379-6779(97)80232-9
[3] P. J. Kinlen, D. S. Silverman and C. R. Jeffreys, “Corrosion Protection Using Polyaniline Coating Formulations,” Synthetic Metals, Vol. 85, No. 1-3, 1997, pp. 1327-1332. doi:10.1016/S0379-6779(97)80257-3
[4] A. A. Hermas, M. Nakayama and K. Ogura, “Enrichment of Chromium-Content in Passive Layers on Stainless Steel Coated with Polyaniline,” Electrochimica Acta, Vol. 50, No. 10, 2005, pp. 2001-2007. doi:10.1016/j.electacta.2004.09.008
[5] D. Sazou, M. Kourouzidou and E. Pavlidou, “Potentio-dynamic and Potentiostatic Deposition of Polyaniline on Stainless Steel: Electrochemical and Structural Studies for a Potential Application to Corrosion Control,” Electrochimica Acta, Vol. 52, No. 13, 2007, pp. 4385-4397. doi:10.1016/j.electacta.2006.12.020
[6] B. Wessling, “Passivation of Metals by Coating with Polyaniline: Corrosion Potential Shift and Morphological Changes,” Advanced Materials, Vol. 6, No. 3, 1994, pp. 226-228. doi:10.1002/adma.19940060309
[7] H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, “Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-Ray Photoelectron Spectroscopy,” Macromolecules, Vol. 25, No. 22, 1992, pp. 6029-6034. doi:10.1021/ma00048a026
[8] H. S. O. Chan, S. C. Ng, S. H. Seow, W. S. Sim and T. S. A. Hor, “Thermal Analysis of Electroactive Polymers Based on Aniline and Its Derivatives,” Journal of Thermal Analysis and Calorimetry, Vol. 39, No. 2, 1993, pp. 177-185. doi:10.1007/BF01981730
[9] P. S. Rao and D. N. Sathyanarayana, “Synthesis of Electrically Conducting Copolymers of Aniline with o/m- Amino Benzoic Acid by an Inverse Emulsion Pathway,” Polymer, Vol. 43, No. 18, 2002, pp. 5051-5058. doi:10.1016/S0032-3861(02)00341-5
[10] M.-S. Wu, T.-C. Wen and A. Gopalan, “In Situ UV-Visible Spectroelectrochemical Studies on the Co-polymerization of Diphenylamine with Anthranilic Acid,” Materials Chemistry and Physics, Vol. 74, No. 1, 2002, pp. 58-65. doi:10.1016/S0254-0584(01)00406-0
[11] B. L. Rivas, and C. O. Sanchez, “Poly(2-) and (3-Amino- benzoic Acids) and Their Copolymers with Aniline: Synthesis, Characterization, and Properties,” Journal of Applied Polymer Science, Vol. 89, No. 10, 2003, pp. 2641- 2648. doi:10.1002/app.12236
[12] H. Yan, H.-J. Wang, S. Adisasmito and N. Toshima, “Novel Syntheses of Poly(o-Aminobenzoic Acid) and Copolymers of o-Aminobenzoic Acid and Aniline as Potential Candidates for Precursor of Polyaniline,” Bulletin of the Chemical Society of Japan, Vol. 69, No. 8, 1996, pp. 2395-2401. doi:10.1246/bcsj.69.2395
[13] C. Thiemann and C. M. A. Brett, “Electrosynthesis and Properties of Conducting Polymers Derived from Aminobenzoic Acids and from Aminobenzoic Acids and Aniline,” Synthetic Metals, Vol. 123, No. 1, 2001, pp. 1-9. doi:10.1016/S0379-6779(00)00364-7
[14] C. M. A. Brett and C. Thiemann, “Conducting Polymers from Aminobenzoic Acids and Aminobenzenesulphonic Acids: Influence of pH on Electrochemical Behaviour,” Journal of Electroanalytical Chemistry, Vol. 538-539, 2002, pp. 215-222. doi:10.1016/S0022-0728(02)01215-9
[15] H. J. Salavagione, D. F. Acevedo, M. C. Miras, A. J. Motheo and C. Barbero, “Comparative Study of 2-Amino and 3-Aminobenzoic Acid Copolymerization with Aniline Synthesis and Copolymer Properties,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, No. 22, 2004, pp. 5587-5589. doi:10.1002/pola.20409
[16] M. T. Nguyen and A. F. Diaz, “Water-Soluble Poly(Aniline-co-o-Anthranilic Acid) Copolymers,” Macromolecules, Vol. 28, No. 9, 1995, pp. 3411-3415. doi:10.1021/ma00113a047
[17] K. Mallick, K. Mondal, M. W. Comb and M. Scurrell, “Gas Phase Hydrogenation Reaction Using a ‘Metal Na- noparticle-Polymer’ Composite Catalyst,” Journal of Materials Science, Vol. 43, No. 18, 2008, pp. 6289-6295. doi:10.1007/s10853-008-2892-7
[18] S. K. Shukla, M. A. Quraishi and R. Prakash, “A Self-Doped Conducting Polymer ‘Polyanthranilic Acid’: An Efficient Corrosion Inhibitor for Mild Steel in Acidic Solution,” Corrosion Science, Vol. 50, No. 10, 2008, pp. 2867-2872. doi:10.1016/j.corsci.2008.07.025
[19] F. Mansfeld, M. W. Kendig, and S. Tsai, “Evaluation of Corrosion Behavior of Coated Metals with AC Impedance Measurements,” Corrosion, Vol. 38, No. 9, 1982, pp. 478-485.
[20] F. Bentiss, M. Traisnel and M. Lagrenee, “The Substituted 1,3,4-Oxadiazoles: A New Class of Corrosion Inhibitors of Mild Steel in Acidic Media,” Corrosion Science, Vol. 42, No. 1, 2000, pp. 127-146. doi:10.1016/S0010-938X(99)00049-9
[21] S. Murlidharan, K. L. N. Phani, S. Pitchumani, S. Ravi-chandran and S. V. K. Iyer, “Polyamino-Benzoquinone Polymers: A New Class of Corrosion Inhibitors for Mild Steel,” Journal of the Electrochemical Society, Vol. 142, No. 5, 1995, pp. 1478-1483. doi:10.1149/1.2048599
[22] J. Stejskal, M. Omastova, S. Fedorova, J. Prokes and M. Trchova, “Polyaniline and Polypyrrole Prepared in the Presence of Surfactants: A Comparative Conductivity Study,” Polymer, Vol. 44, No. 5, 2003, pp. 1353-1358. doi:10.1016/S0032-3861(02)00906-0
[23] M. V. Kulkarni and A. K. Viswanath, “Comparative Studies of Chemically Synthesized Polyaniline and Poly (o-Toluidine) Doped with p-Toluene Sulphonic Acid,” European Polymer Journal, Vol. 40, No. 2, 2004, pp. 379-384. doi:10.1016/j.eurpolymj.2003.10.007
[24] J. C. Michaelson, A. J. McEvoy and N. Kuramoto, “Morphology and Growth Rate of Polyaniline Films Modified by Surfactants and Polyelectrolytes,” Reactive Polymers, Vol. 17, No. 2, 1992, pp. 197-206. doi:10.1016/0923-1137(92)90152-R
[25] N. Kuramoto and A. M. Genies, “Micellar Chemical Polymerization of Aniline,” Synthetic Metals, Vol. 68, No. 2, 1995, pp. 191-194. doi:10.1016/0379-6779(94)02284-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.