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Abstract 
As is well known, coherence does not distinguish the relative phase of a pair of real, sinusoidal 
time series; the coherence between them is always unity. This behavior can limit the applicability 
of coherence analysis in the special case where the time series are band-limited (nearly-monoch- 
romatic) and where sensitivity to phase differences is advantageous. We propose a simple mod-
ification to the usual formula for coherence in which the cross-spectrum is replaced by its real 
part. The resulting quantity behaves similarly to coherence, except that it is sensitive to relative 
phase when the signals being compared are strongly band-limited. Furthermore, it has a useful 
interpretation in terms of the zero-lag cross-correlation of real band-passed versions of the time 
series. 
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1. Introduction 
In this paper, we examine the well-known formula for the frequency-dependent coherence 2C  between two 
time series and argue that it is not well-suited for quantifying the similarity of band-limited data. Using a time 
domain-based analysis, we identify a critical step in the development of the traditional algorithm, which we 
show is inappropriate in the band-limited case, and propose an alternative that leads to the definition of a new 
quantity 2S , which while having a definition similar to 2C , is better behaved. We then use both synthetic tests 
and analytic methods to elucidate the behavior of 2S , and show that it is a viable alternative to 2C . Our belief 
is that the choice of time series analysis technique should be guided by the properties of the data; one analyzes 
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time series in a way designed to best extract knowledge from them. One should always be willing to adapt an 
analysis method to achieve this goal. 

The issue considered here is how best to quantify the similarity between time series that are 1) real (as con-
trasted to complex) and 2) band-limited (in the sense of being nearly monochromatic). Such time series consti-
tute important special cases because most natural phenomena are described using real numbers and many are 
dominated by a single period of oscillation. For example, the daily period often contributes strongly to physio-
logical and meteorological signals, the annual period to environmental and climatic signals, the precessional pe-
riod (25.7 ka) [1] to sedimentary and paleontological signals, and so forth. Furthermore, commonly-used tech-
niques such as multiple window coherence analysis [2], where two long time-series are divided into a sequence 
of shorter pairs before coherence analysis is performed, may accentuate the degree to which a single period of 
oscillation dominates the signal. 

An important property of nearly-monochromatic signals is their relative phase. Whether two time series that 
are in-phase (as in Figure 1(a)) or out-of-phase (as in Figure 1(b)) may be important, for example, from the 
perspective of an analyst trying to unravel the dynamics of the underlying causative processes. 

Traditional coherence analysis [3] has very limited application in this case, because of the well-known insen-
sitivity of coherence to relative phase. The coherence of two sinusoidal time series of the same period is always 
unity, irrespective of their relative phase. Simply put, coherence does not distinguish a sine from a cosine. Given 
the general usefulness of coherence in other settings, it is well to ask why it “fails” in this special case and 
whether it can be modified to produce what may, in some circumstances, be a more useful measure of similarity. 

When asking why any quantity encountered in time series analysis, such as coherence, behaves in a certain 
way, one must contend with the fact that most, if not all, such quantities can be derived from several different 
perspectives. Any answer will probably make sense only from one of these points of view. Consider, for exam-
ple, the estimated mean of a time series. This deceptively simple quantity can be understood, alternately, as 
arising through the minimizing of error (a deterministic derivation) [4] or through the maximizing of likelihood 
(a probabilistic derivation) [5] or through the maximization of importance (an informational derivation) [6] to 
name just a few. The answer to a question concerning the estimated mean, say for example, whether it should 
always be bounded by the smallest and largest datum, will necessarily refer to one of these perspectives. The 
same is true for coherence. We adopt here a deterministic perspective: 

The coherence between two time series, at frequency, 0ω , is closely-related to the zero-lag cross-correlation 
of band-passed versions of those time series, where the band-pass filter is one-sided and has center-frequency, 

0ω . In fact, the former is merely a normalized and squared version of the latter. 
This is but one perspective among many, but one we find helpful because it brings out a relationship to the 

cross-correlation, another quantity useful in assessing the similarity between two time series. Cross-correlation 
is defined in the time-domain, as contrasted to coherence, which is defined in the frequency-domain, so the link 
provides complimentary information. 

The appearance of a one-sided filter (Figure 2(a)), may seem counter-intuitive, because such filters are al-
most never used in practice, or at least not when the data are real, for they turn a real-time series into a complex 
one. All the band-pass filters that an analyst would commonly use are two-sided (Figure 2(b)), and so have real 
output. The reason for its appearance here is that the usual definition of coherence is completely general. It does 
not presume that the signals being compared are real, and so builds in the possibility that negative and positive  

 

 
(a)                                  (b) 

Figure 1. (a) Two nearly-monochromatic time series (black and red curves) with 
the relative phase, 0ϕ = ; (b) Same as (a), but with relative phase, π 2ϕ = . 
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(a)                                  (b) 

Figure 2. (a) Fourier transform of a one-sided band-pass filter, consisting of a 
single boxcar function centered at frequency, 0ω , and with width, 2 ω∆ ; (b) 
Fourier transform of a two-sided band-pass filter, also centered at frequency, 

0ω . 
 
frequency components of the time series behave completely differently from one another. This is contrast to 
real-time series, where they are complex conjugate pairs. However, in being general, it cannot exploit an impor-
tant property of real signals: that sines and cosines are distinguishable from one another. As we show below, 
substituting a two-sided filter produces a version of coherence that distinguishes sines from cosines; that is, one 
that is sensitive to the relative phase of band-limited signals. 

2. Coherence-Like Measure of Similarity Based of Cross-Correlation. 
The problem we consider is how to quantify the similarity of two real, transient time series, ( )u t  and ( )v t , in 
the vicinity of a specified frequency, 0ω . The strategy we adopt is to band-pass filter these time series and then 
to compute their zero-lag cross-correlation. The filter selects out frequencies near 0ω  and the cross-correlation 
quantifies similarity, since it attains its largest value when ( ) ( )u t v t=  (ignoring, for the moment, the issue of 
normalization). We denote the filtered time series as, ( ) ( )f t u t∗  and ( ) ( )f t v t∗  where the symbol ∗  denotes 
convolution. We require the filtered time series to be purely real, so that the filter, ( )f t  has a two-sided Fourier 
transform with the symmetry, ( ) ( )f fω ω∗= −  , where the tilde denotes Fourier transformation and the asterisk 
denotes complex conjugation. We choose a filter with a purely-real Fourier transform, built from two unit-am- 
plitude boxcar functions, one centered at 0ω−  and the other at 0ω+ , each of width 2 ω∆ . This filter does not 
affect Fourier components within the pass-band and completely rejects those outside of it. 

The convolution, ( )g t , and cross-correlation, ( )c t , of two real time series are defined as [7] (their pages 24 
and 46): 

( ) ( ) ( )dg t u v u v tτ τ τ
+∞

−∞
= ∗ = −∫                              (1a) 

( ) ( ) ( )dc t u v u v tτ τ τ
+∞

−∞
= ∗ = +∫                              (1b) 

Note that at zero-lag, cross-correlation is just the area beneath the product of the two time series: 

( ) ( ) ( ) ( )00 dtc t u v u vτ τ τ
+∞

= −∞
= = ∗ = ∫                             (2) 

Note also that definition of the convolution and cross-correlation in (1a), (1b) differ only by a sign of τ  in 
the ( )v t τ±  term. The substitution, τ τ′ = − , leads to the very useful, well-known identity, ( ) ( )a t b t∗ =  ( ) ( )a t b t− ∗  ([7], their page 47). Applying this identify, we find that the cross-correlation of the filtered time 
series is: 

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ) ( )0 0 0 0 0, , , , , , , , , ,c t f t u t f t v t f t f t u t v tω ω ω ω ω ω ω ω ω ω∆ = ∆ ∗ ∆ ∗ = − ∆ ∗ ∆ ∗ − ∗  (3) 

At zero lag, the cross-correlation is proportional the integral of its Fourier transform, ( )c ω : 

( ) ( ) ( ) ( )
0

1 10 exp d d
2π 2πt

c t c i t cω ω ω ω ω
+∞ +∞

=−∞ −∞
= = =∫ ∫                      (4) 
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Inserting (3) into (4) and using the rule that the Fourier transform of a convolution is the product of the trans-
forms ([7], page 115) and the rule that the transform of ( )a t∗ −  is ( )a ω∗

  (see Appendix) yields: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ){ }

0 0

0 0

0

0

0 0 0

0 0

10, , , , , , d
2π
1 1                        d d
2π 2π
1 2                        Re d Re .
π π

c t f f u v

u v u v

u v u v

ω ω ω ω

ω ω ω ω

ω ω

ω ω

ω ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω

ωω ω ω ω ω

+∞ ∗

−∞

− +∆ + +∆∗ ∗

− −∆ + −∆

+∆ ∗ ∗

−∆

= ∆ = ∆ ∆

≈ +

∆
= =

∫

∫ ∫

∫

 

 

   

   

             (5) 

Here ( )0a ω  denotes the mean value of ( )a ω  in the frequency band, 0ω ω± ∆ . Note that ( )00, ,c t ω ω= ∆   
is defined for 0 0ω > , only. The quantity ( ) ( )u vω ω∗

   is the cross-spectrum. Thus, the zero-lag cross-correla- 
tion of the real band-pass filtered time series depends upon the average value of the real part of their cross-spec- 
trum in the filter’s pass-band. The amplitude of ( )00, ,c t ω ω= ∆  depends on the amplitude of two time series, 
as well as upon their degree of similarity. We remove this dependence by normalizing by the energy uE  and 

vE  in the two time series, defined as: 

( ) ( ) ( ) ( )2 2
0 0d   and  du vt tE u u u E v v vτ τ τ τ

+∞ +∞

= =−∞ −∞
= ∗ = = ∗ =∫ ∫                 (6) 

The normalized measure of similarity, say S , is: 

( ) ( ) ( ){ }
( ) ( )

0 00
01 2 1 2

0 0

Re0, ,
  with  0

u v

u vc t
S

E E u v

ω ωω ω
ω

ω ω

= ∆
= = ≤ < +∞

 

 

                 (7) 

Note that the quantity, 2S , which we nickname here similarity, varies between zero and unity. It has almost 
exactly the functional form of the quantity called coherence, except for the taking of the real part. The imaginary 
part cancelled from (5) precisely because the time series are real and the filter is two-sided. 

3. Coherence Related to Zero-Lag Cross-Correlation 
As asserted in the Introduction, the usual formula for coherence can be obtained simply by switching to a 
one-sided filter, a single unit step function of width 2 ω∆  centered at frequency 0ω  (where 0ω−∞ < < +∞ ). 
The filtered time series f u∗  and f u∗  are complex, so that one must define a cross-correlation appropriate 
for complex signals; that is, replace ( )u τ  with ( )u τ∗  in (1b). These modifications lead to a version of (7) that 
is exactly the usual formula for the coherence: 

( ) ( ) ( ) ( )

( ) ( )

2
2 0 002

0 02 2
0 0

0, ,
,   with  

u v

u vc t
C

E E u v

ω ωω ω
ω ω ω

ω ω

∗ ∗
= ∆

∆ = = −∞ < < +∞
 

 

             (8) 

As an aside, we note that our derivations of ( )2
0C ω  and ( )2

0S ω  hide an inconsistency in the interpreta-
tion of ( ) 2

0u ω  as the power in the time series ( )u t  at frequency, 0ω . It represents power for a complex 
time series but only half the power for a real one, owing to the different intervals over which frequency, 0ω , is 
defined. This factor of two compensates for the apparent loss of power when the real part is taken in (5). 

4. Similarity and Coherence of Real Band-Limited Signals 
Suppose that time series ( )u t  and ( )v t  are monochromatic, with equal frequency, 0ω , but with different 
amplitudes, 0u  and 0u , and relative phase, ϕ : 

( ) ( ) ( ) ( )0 0 0 0sin   and  sinu t u t v t v tω ω ϕ= = −                         (9) 

The similarity, ( )2
0S ω , is most easily calculated using its time-domain definition. Taking, without loss of 

generality, the window of observation to be 0 2πτ< < , we have: 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
2π 2π2 2 2 20 0 0 0

0 0 0 00 0

2π 0 0 0 0 0 0
0 0 0 0

2
2 2

0

sin d   and  sin d
2 2

and  0 sin sin d cos cos
2 2

0
so  cos .

u v

u v

u v
E u E v

u v u v
c t u v t t

c t
S

E E

ω ω
ω τ τ ω τ ϕ τ

ω ω
ω ω ϕ τ ϕ

ϕ

= = = − =

= = − =

=
= =

∫ ∫

∫           (10) 

Thus, 2S  is unity when the two sinusoids are in-phase ( )0ϕ =  and declines monotonically to zero when 
they are out-of-phase ( )π 2ϕ = . 

The coherence, ( )2
0C ω , is calculated by recognizing that a sine function is built up of two complex expo-

nentials of frequency 0ω+  and 0ω−  and that the one-sided filter selects only the one with positive frequency: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0 0

0 0 0
0 0

exp   and  exp   

with    and  cos sin .
2 2 2

f t u t U i t f t v t V i t

u u v
U V

i i i

ω ω

ϕ ϕ

∗ = ∗ =

 = = − 
 

                (11) 

We then find: 

( ) ( )

( ) ( )

2 2 2
0 0 0 0 0

2
2

0

2π

0

0

exp exp d 2π and  2π

0
and  0

  

2π so

 

  1,

 

  

u v

u v

E U i t i t U E V

c t
c t U V C

E E

ω ω τ= − = =

=
= = = =

∫
               (12) 

This is the well-known result that the coherence, 2C , is unity irrespective of the relative phase of the two si-
nusoids. This behavior is a consequence of the one-sided filter, which turns both ( )0sin tω  and ( )0cos tω  into 
functions proportional to the same complex exponential, ( )0exp i tω . 

5. Examples 
We consider the example of a sequence of nearly-monochromatic wavelets, formed by taking the product of a 
phase-shifted sinusoid of frequency, 0ω , and a normal envelope function of half-width, σ : 

( ) ( ) ( )( )2 2
0 0sin exp 2t t tω ϕ σ− −                           (13) 

and then by adding a small amount of uncorrelated random noise. Figures 3(a)-(c) illustrate pairs of these 
wavelets with different phase relationships. Note that the wavelets are not merely time-shifted versions of one 
another, since the position of the zeros crossings of the sinusoid (parameterized by ϕ ) can and the position of 
the center of the envelope (parameterized by 0t ) can be independently varied. One might imagine a time series 
analysis scenario where ( )u t  represents the external forcing applied to some dynamical system, and ( )v t  
represents the response. In such a context, the distinction between these different wavelet shapes is important, 
say for detecting whether or not some anticipated interaction has occurred. In this case, the similarity, ( )2

0S ω  
(red curves in Figure 3(d), Figure 3(c)) is a more useful quantity than the coherence, ( )2

0C ω  (black curves), 
since it varies strongly with the phase-relationships, whereas coherence does not. 

We have not performed an exhaustive analysis of the differences between ( )2
0S ω  and ( )2

0C ω , when they 
are applied to broad-band signals. The key difference is the effect of the taking of the real part: 

( )
( ) ( )

22

2 22

,

.

R R I I

R R I I R I I R

u v u v

u v u u v u

S

C v v

∝

∝

+

+ + −

   

       

                        (14) 

where the Fourier transforms are written in terms of their real and imaginary parts, R Iu u iu= +    and R Iv v iv= +   . 
Since 2S  and 2C  differ by a manifestly positive amount, we are guaranteed that 2 2C S≥ . However, without 
further specification of the behavior or u  and v , no further characterization is possible. In the special case 
where both time series contain a common function ( )w t , so that ( ) ( ) ( )u t w t x t= +  and ( ) ( ) ( )v t w t y t= +  
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and where ( )w t , ( )x t  and ( )y t  are all broad-band, we find: 

( )
( )

crossterms like 

crossterm

,

.s like 

R R I I R R

R R I I R I

S

C

w w w w x y

w w w w x y

∝ ++

+∝ +

     

     

                        (15) 

We might expect in the case that 2 2C S≈ , since the cross-terms are averages of functions that oscillate around 
zero and therefore likely to be small. Numerical tests (Figure 4) support this idea, at least for non-transient 
broad-band time series with a moderate degree of correlation. 

 

 
(a)                        (b)                         (c) 

 
(d)                         (e)                         (f) 

Figure 3. (a)-(c) Sequence of three pairs of nearly-monochromatic time series with frequency 
0 2πω ≈  and with relative phase of, 0ϕ = , π 4ϕ = . and π 2ϕ = , respectively; (d)-(f) 

Corresponding coherence, ( )2C ω , and similarity (black curve) and ( )2S ω  (red curve). 

Note that ( )2C ω , is approximately unity for all three cases, whereas ( )2S ω  decreases as 

the relative phase increases. In this example ω∆  is set to 0 4ω . 
 

 
(a)                        (b)                         (c) 

 
(d)                         (e)                         (f) 

Figure 4. (a)-(c) Sequence of three pairs of broad-band time series with an approximately: (a) 
frequency-independent coherence, (b) coherence that increases with frequency, and (c) cohe-
rence that decreases with frequency; (d)-(f) Corresponding coherence, ( )2C ω  (black curve), 

and similarity and ( )2S ω  (red curve), which are approximately equal, although also obey-

ing the rule 2 2C S≥ . In this example ω∆  is set to 0 4ω . 
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6. Conclusion 
In summary, we recommend this simple modification of coherence in cases where the time series that are being 
compared are narrow-band and where phase relationships between them are considered important. For pure si-
nusoids differing by phase, ϕ , it obeys the rule 2 2cosS ϕ= ; that is, similarity monotonically decreases from 
unity, when 0ϕ = , and to zero, when π 2ϕ = . In other respects, it behaves very similarly to coherence. Fi-
nally, it has a very intuitive time-domain interpretation: ( )0S ω  gives you exactly what you would get if you 
normalized each time series by the square-root of its energy, band-pass filtered each with a two-sided boxcar 
filter centered around frequency, 0ω , and computed their zero-lag cross-correlation. 
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Appendix 
The rule that the transform of ( )a t∗ −  is ( )a ω∗

  is well-known, but we derive it here for completeness. The 
Fourier transform of ( )a t∗ −  is: 

( ) [ ] ( ) [ ] ( ) [ ]

( ) [ ] ( )                             

exp d exp d exp d

ex     p . d 

a t i t t a t i t t a i

a i a

ω ω τ ωτ τ

τ ωτ τ ω

∗ ∗+∞ +∞ +∞∗

−∞ −∞ −∞

∗+∞ ∗

−∞

   − − = − = − −      

 = − =  

∫ ∫ ∫

∫ 

            (A1) 

Here we have utilized the substitution t τ= − . 
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