Boundedness of Calderón-Zygmund Operator and Their Commutator on Herz Spaces with Variable Exponent

Download Download as PDF (Size:373KB)  HTML   XML  PP. 428-443  
DOI: 10.4236/am.2017.84035    331 Downloads   391 Views  

ABSTRACT

The aim of this paper is to study the boundedness of Calderón-Zygmund operator and their commutator on Herz Spaces with two variable exponents p(.),q(.). By applying the properties of the Lebesgue spaces with variable exponent, the boundedness of the Calderón-Zygmund operator and the commutator generated by BMO function and Calderón-Zygmund operator is obtained on Herz space.

Cite this paper

Abdalrhman, O. , Abdalmonem, A. and Tao, S. (2017) Boundedness of Calderón-Zygmund Operator and Their Commutator on Herz Spaces with Variable Exponent. Applied Mathematics, 8, 428-443. doi: 10.4236/am.2017.84035.

References

[1] Calderón, A. and Zygmund, A. (1956) On Singular Integrals. American Journal of Mathematics, 78, 289-309.
https://doi.org/10.2307/2372517
[2] Calderón, A. and Zygmund, A. (1978) On Singular Integral with Variable Kernels. Applied Analysis, 7, 221-238.
https://doi.org/10.1080/00036817808839193
[3] Jouné, J.-L. (1983) Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. In: Lecture Notes in Math, Vol. 994, Springer-Verlag, Berlin, Heidelberg.
[4] Coifman, R., Rochberg, R. and Weiss, G. (1976) Factorization Theorems for Hardy Spaces in Several Variables. Annals of Mathematics, 103, 611-635.
https://doi.org/10.2307/1970954
[5] Kovácik, O. and Rákosník, J. (1991) On Spaces Lp(x) and Wk,p(x). Czechoslovak Mathematical Journal, 41, 592-618.
[6] Diening, L. and Ruicka, M. (2003) Calderón-Zygmund Operators on Generalized Lebesgue Spaces Lp(.) and Problems Related to Fluid Dynamics. Journal für die Reine und Angewandte Mathematik, 563, 197-220.
https://doi.org/10.1515/crll.2003.081
[7] Chen, Y., Levine, S. and Rao, M. (2006) Variable Exponent, Linear Growth Functionals in Image Restoration. SIAM Journal on Applied Mathematics, 66, 1383-1406.
https://doi.org/10.1137/050624522
[8] Li, F., Li, Z. and Pi, L. (2010) Variable Exponent Functionals in Image Restoration. Applied Mathematics and Computation, 216, 870-882.
[9] Harjulehto, P., Hasto, P., Latvala, V. and Toivanen, O. (2013) Critical Variable Exponent Functionals in Image Restoration. Applied Mathematics Letters, 26, 56-60.
[10] Izuki, M. (2009) Herz and Amalgam Spaces with Variable Exponent, the Haar Wavelets and Greediness of the Wavelet System. East Journal on Approximations, 15, 87-109.
[11] Izuki, M. (2010) Boundedness of Commutators on Herz Spaces with Variable Exponent. Rendiconti del Circolo Matematico di Palermo, 59, 199-213.
https://doi.org/10.1007/s12215-010-0015-1
[12] Izuki, M. (2010) Fractional Integrals on Herz-Morrey Spaces with Variable Exponent. Hiroshima Mathematical Journal, 40, 343-355.
[13] Wang, L. and Tao, S. (2014) Boundedness of Littlewood-Paley Operators and Their Commutators on Herz-Morrey Spaces with Variable Exponent. Journal of Inequalities and Applications, 2014, 227.
https://doi.org/10.1186/1029-242x-2014-227
[14] Wang, L. and Tao, S. (2015) Parameterized Littlewood-Paley Operators and Their Commutators on Lebegue Spaces with Variable Exponent. Analysis in Theory and Applications, 31, 13-24.
[15] Tan, J. and Liu, Z. (2015) Some Boundedness of Homogeneous Fractional Integrals on Variable Exponent Function Spaces. ACTA Mathematics Science (Chinese Series), 58, 310-320.
[16] Omer, A., Afif, A. and Tao, S. (2016) The Boundedness for Commutators of Calderón-Zygmund Operator on Herz-Tybe Hardy Spaces with Variable Exponent. Journal of Applied Mathematics and Physics, 4, 1157-1167.
https://doi.org/10.4236/jamp.2016.46120
[17] Wang, L. and Tao, S. (2016) Parameterized Littlewood-Paley Operators and Their Commutators on Herz Spaces with Variable Exponents. Turkish Journal of Mathematics, 40, 122-145.
https://doi.org/10.3906/mat-1412-52
[18] Cuz-Uribe, D., Fiorenza, A., Martell, J.M. and Perez, C. (2006) The Boundedness of Classical Operators on Variable Lp Spaces. Annales Academiae Scientiarum Fennicae-Mathematica, 31, 239-264.
[19] Almeida, A., Hasanov, J. and Samko, S. (2008) Maximal and Potential Operators in Variable Exponent Morrey Spaces. Georgian Mathematical Journal, 15, 195-208.
[20] Cruz-Uribe, D. and Fiorenza, A. (2013) Variable Lebesgue Spaces: Foundations and Harmonic Analysis. In: Applied and Numerical Harmonic Analysis, Springer, New York.
[21] Diening, L. (2005) Maximal Function on Musielak-Orlicz Spaces and Generalized Lebesgue Spaces. Bulletin des Sciences Mathématiques, 129, 657-700.
https://doi.org/10.1016/j.bulsci.2003.10.003

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.