Linear Prolate Functions for Signal Extrapolation with Time Shift

Download Download as PDF (Size:818KB)  HTML   XML  PP. 417-427  
DOI: 10.4236/am.2017.84034    227 Downloads   324 Views  

ABSTRACT

We propose a low complexity iterative algorithm for band limited signal extrapolation. The extrapolation method is based on the decomposition of finite segments of the signal via truncated series of real-valued linear prolate functions. Our theoretical derivation shows that given a truncated series (up to a selectable value) of prolate functions, it is possible to extrapolate the band limited function elsewhere if each extrapolated portion of the function is subject only to moderate truncation errors that we quantify in this paper. The effects of different sources of errors have been analyzed via extensive simulations. We have investigated a property of the signal decomposition formula based on linear prolate functions whereby the integration interval does not need to be symmetric with respect to the origin while time-shifted prolate functions are used in the series.

Cite this paper

Valente, D. , Cada, M. and Ilow, J. (2017) Linear Prolate Functions for Signal Extrapolation with Time Shift. Applied Mathematics, 8, 417-427. doi: 10.4236/am.2017.84034.

References

[1] Slepian, D. and Pollak, H.O. (1961) Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty—I. The Bell System Technical Journal, 40, 43-63.
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
[2] Moore, I.C. and Cada, M. (2004) Prolate Spheroidal Wave Functions, an Introduction to the Slepian Series and Its Properties. Applied and Computational Harmonic Analysis, 16, 208-230.
[3] Frieden, B.R. (1971) Evaluation, Design and Extrapolation Methods for Optical Signals Based on Use of the Prolate Functions. Progress in Optics, 9, 311-407.
[4] Soman, S. and Cada, M. (2017) Design and Simulation of a Linear Prolate Filter for a Baseband Receiver. Journal of Information Technology and Software Engineering, 7, 197.
https://www.omicsgroup.org/journals/design-and-simulation-of-a-linear-prolate-filter-for-a-baseband-receiver-2165-7866-1000197.pdf
[5] Papoulis, A. (1975) A New Algorithm in Spectral Analysis and Band-Limited Extrapolation. IEEE Transactions on Circuits and Systems, 22, 735-742.
https://doi.org/10.1109/TCS.1975.1084118
[6] Shi, J., Sha, X., Zhang, Q. and Zhang, N. (2012) Extrapolation of Bandlimited Signals in Linear Canonical Transform Domain. IEEE Transactions on Signal Processing, 60, 1502-1508.
https://doi.org/10.1109/TSP.2011.2176338
[7] Zhao, H., Ran, Q.W., Ma, J. and Tan, L.Y. (2010) Generalized Prolate Spheroidal Wave Functions Associated with Linear Canonical Transform. IEEE Transactions on Signal Processing, 58, 3032-3041.
https://doi.org/10.1109/TSP.2010.2044609
[8] Cada, M. (2012) Private Communication. Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Canada.
[9] Xiao, H. (2001) Prolate Spheroidal Wave Functions, Quadrature, Interpolation, and Asymptotic Formulae. Ph.D. Dissertation, Department of Computer Science, Yale University, New Haven.
[10] Devasia, A. and Cada, M. (2013) Bandlimited Signal Extrapolation Using Prolate Spheroidal Wave Functions. IAENG International Journal of Computer Science, 40, 291-300.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.