Share This Article:

FABP-2 and PPAR-γ Haplotype as Risk Factors for Dyslipidemia in a Type 2 Diabetes Mellitus Population of Santa Rosa del Conlara, San Luis, Argentina

PP. 1-13
DOI: 10.4236/oalib.1100967    1,483 Downloads   1,711 Views   Citations

ABSTRACT

Introduction: Type 2 Diabetes Mellitus (T2DM) is a complex disorder caused by the interaction between genetic predisposition and environmental factors. Genetics plays an important role on lipid homeostasis. Many genes are involved in the lipid metabolism, such as FABP-2 and PPAR-γ. Aim: To evaluate the association between specific SNPs and haplotypes of the FABP-2 and PPAR-γ genes with T2DM and lipid profile in an Argentinean population. Methods: The FABP-2 (rs1799883) and PPAR-γ (rs1801282) polymorphisms were genotyped and analyzed in association with lipid profile and T2DM, separately and also combined in haplotypes. Results: The frequency of the rare Thr54 allele of the FABP-2 polymorphism in control (0.33) was not different from the frequency in T2DM (0.27), whereas the frequency of the rare Ala12 allele of the PPAR-Introduction: Type 2 Diabetes Mellitus (T2DM) is a complex disorder caused by the interaction between genetic predisposition and environmental factors. Genetics plays an important role on lipid homeostasis. Many genes are involved in the lipid metabolism, such as FABP-2 and PPAR-γ. Aim: To evaluate the association between specific SNPs and haplotypes of the FABP-2 and PPAR-γ genes with T2DM and lipid profile in an Argentinean population. Methods: The FABP-2 (rs1799883) and PPAR-γ (rs1801282) polymorphisms were genotyped and analyzed in association with lipid profile and T2DM, separately and also combined in haplotypes. Results: The frequency of the rare Thr54 allele of the FABP-2 polymorphism in control (0.33) was not different from the frequency in T2DM (0.27), whereas the frequency of the rare Ala12 allele of the PPAR-γ polymorphism in control was different from the frequency in T2DM (0.26 and 0.14, respectively; p = 0.0031). Frequencies of haplotypes for these two single-nucleotide polymorphisms differed significantly in control and T2DM. Haplotype association analysis showed the associations between ThrPro haplotype and TG levels (OR = 2.520; 95% CI = 1.139 - 5.575; p = 0.027) and between ThrPro haplotype and TC and LDL-c levels when compared to AlaPro haplotype (difference = 0.175, 95% CI = 0068 - 0.499, p < 0.0001; difference = 0.052, 95% CI = 0.017 - 0.158, p < 0.0001, respectively). Conclusions: These results from a haplotype analysis show for the first time that genetic combinations of alleles of the FABP-2 and PPAR-γ gene could play a role in the susceptibility to develop dyslipemia in T2DM. polymorphism in control was different from the frequency in T2DM (0.26 and 0.14, respectively; p = 0.0031). Frequencies of haplotypes for these two single-nucleotide polymorphisms differed significantly in control and T2DM. Haplotype association analysis showed the associations between ThrPro haplotype and TG levels (OR = 2.520; 95% CI = 1.139 - 5.575; p = 0.027) and between ThrPro haplotype and TC and LDL-c levels when compared to AlaPro haplotype (difference = 0.175, 95% CI = 0068 - 0.499, p < 0.0001; difference = 0.052, 95% CI = 0.017 - 0.158, p < 0.0001, respectively). Conclusions: These results from a haplotype analysis show for the first time that genetic combinations of alleles of the FABP-2 and PPAR-γ gene could play a role in the susceptibility to develop dyslipemia in T2DM.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Siewert, S. , Nicotra, M. , Gonzalez, I. , Fernandez, G. and Ojeda, M. (2014) FABP-2 and PPAR-γ Haplotype as Risk Factors for Dyslipidemia in a Type 2 Diabetes Mellitus Population of Santa Rosa del Conlara, San Luis, Argentina. Open Access Library Journal, 1, 1-13. doi: 10.4236/oalib.1100967.

References

[1] Scully, T. (2012) Diabetes in Numbers. Nature, 485, S2-S3.
http://dx.doi.org/10.1038/485S2a
[2] Slimel, M.R., Coppolillo, F.E., Masi, J.D., Mendoza, S.M. and Tannuri, J. (2010) Epidemiology of Diabetes in Argentina. Avances en Diabetología, 26, 101-106.
http://dx.doi.org/10.1016/S1134-3230(10)62006-6
[3] Gross, B. and Staels, B. (2007) PPAR Agonists: Multimodal Drugs for the Treatment of Type-2 Diabetes. Best Practice Research Clinical Endocrinology Metabolism, 21, 687-710.
http://dx.doi.org/10.1016/j.beem.2007.09.004
[4] Gouda, H.N., Sagoo, G.S., Harding, A.H., Yates, J., Sandhu, M.S. and Higgins, J.P. (2010) The Association between the Peroxisome Proliferator-Activated Receptor-Gamma 2 (PPARG2) Pro12Ala Gene Variant and Type 2 Diabetes Mellitus: A HuGE Review and Meta-Analysis. American Journal of Epidemiology, 171, 645-655.
http://dx.doi.org/10.1093/aje/kwp450
[5] Cullen, P. (2000) Evidence That Triglycerides Are an Independent Coronary Heart Disease Risk Factor. American Journal of Cardiology, 86, 943-949.
http://dx.doi.org/10.1016/S0002-9149(00)01127-9
[6] Busch, C.P. and Hegele, R.A. (2000) Variation of Candidate Genes in Triglyceride Metabolism. Journal of Cardiovascular Risk, 7, 309-315.
[7] Ordovas, J.M. (2001) Genetics, Postprandial Lipemia and Obesity. Nutrition, Metabolism, Cardiovascular Diseases, 211, 118-133.
[8] Chen, E.S., Mazzotti, D.R., Furuya, T.K., Cendoroglo, M.S., Ramos, L.R., Araujo, L.Q., Burbano, R.R. and Smith Mde, A. (2010) Association of PPARalpha Gene Polymorphisms and Lipid Serum Levels in a Brazilian Elderly Population. Experimental and Molecular Pathology, 88, 197-201.
http://dx.doi.org/10.1016/j.yexmp.2009.10.001
[9] Prieur, X., Coste, H. and Rodriguez, J.C. (2003) The Human Apolipoprotein AV Gene Is Regulated by Peroxisome Proliferator-Activated Receptor-Alpha and Contains a Novel Farnesoid X-Activated Receptor Response Element. The Journal of Biological Chemistry, 278, 25468-25480.
http://dx.doi.org/10.1074/jbc.M301302200
[10] Yong, E.L., Li, J. and Liu, M.H. (2008) Single Gene Contributions: Genetic Variants of Peroxisome Proliferator-Activated Receptor (Isoforms Alpha, Beta/Delta and Gamma) and Mechanisms of Dyslipidemias. Current Opinion in Lipidology, 19, 106-112.
http://dx.doi.org/10.1097/MOL.0b013e3282f64542
[11] Fajas, L., Debril, M.B. and Auwerx, J. (2001) PPAR Gamma: An Essential Role in Metabolic Control. Nutrition Metabolism and Cardiovascular Diseases, 11, 64-69.
[12] Deeb, S.S., Fajas, L., Nemoto, M., Pihlajamäki, J., Mykkänen, L., Kuusisto, J., Laakso, M., Fujimoto, W. and Auwerx, J.A. (1998) Pro12Ala Substitution in PPARgamma2 Associated with Decreased Receptor Activity, Lower Body Mass Index and Improved Insulin Sensitivity. Nature Genetics, 20, 284-287.
http://dx.doi.org/10.1038/3099
[13] Doney, A.S., Fischer, B., Cecil, J.E., Boylan, K., McGuigan, F.E., Ralston, S.H., Morris, A.D. and Palmer, C.N. (2004) Association of the Pro12Ala and C1431T Variants of PPARG and Their Haplotypes with Susceptibility to Type 2 Diabetes. Diabetologia, 47, 555-558.
http://dx.doi.org/10.1007/s00125-003-1323-1
[14] Meirhaeghe, A., Fajas, L., Helbecque, N., Cottel, D., Lebel, P., Dallongeville, J., Deeb, S., Auwerx, J. and Amouyel, P. (1998) A Genetic Polymorphism of the Peroxisome Proliferator-Activated Receptor γ Gene Influences Plasma Leptin Levels in Obese Humans. Human Molecular Genetics, 7, 435-440.
http://dx.doi.org/10.1093/hmg/7.3.435
[15] Altshuler, D., Hirschhorn, J.N., Klannemark, M., Lindgren, C.M., Vohl, M.C., Nemesh, J., Lane, C.R., Schaffner, S.F., Bolk, S., Brewer, C., Tuomi, T., Gaudet, D., Hudson, T.J., Daly, M., Groop, L. and Lander, E.S. (2000) The Common PPARgamma Pro12Ala Polymorphism Is Associated with Decreased Risk of Type 2 Diabetes. Nature Genetics, 26, 76-80.
http://dx.doi.org/10.1038/79216
[16] Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S. and Hirschhorn, J.N. (2003) Meta-Analysis of Genetic Association Studies Supports a Contribution of Common Variants to Susceptibility to Common Disease. Nature Genetics, 33, 177-182.
http://dx.doi.org/10.1038/ng1071
[17] Tönjes, A., Scholz, M., Loeffler, M. and Stumvoll, M. (2006) Association of Pro12Ala Polymorphism in Peroxisome Proliferator-Activated Receptor Gamma with Pre-Diabetic Phenotypes: Meta-Analysis of 57 Studies on Nondiabetic Individuals. Diabetes Care, 29, 2489-2497.
http://dx.doi.org/10.2337/dc06-0513
[18] Hegele, R.A. (1998) A Review of Intestinal Fatty Acid Binding Protein Gene Variation and the Plasma Lipoprotein Response to Dietary Components. Clinical Biochemistry, 31, 609-612.
http://dx.doi.org/10.1016/S0009-9120(98)00078-2
[19] Baier, L.J., Sacchettini, J.C., Knowler, W.C., Eads, J., Paolisso, G., Tataranni, P.A., Mochizuki, H., Bennett, P.H., Bogardus, C. and Prochazka, M. (1995) An Amino Acid Substitution in the Human Intestinal Fatty Acid Binding Protein Is Associated with Increased Fatty Acid Binding, Increased Fat Oxidation and Insulin Resistance. Journal of Clinical Investigation, 95, 1281-1287.
http://dx.doi.org/10.1172/JCI117778
[20] Agren, J.J., Valve, R., Vidgren, H., Laakso, M. and Uusitupa, M. (1998) Postprandial Lipemic Response Is Modified by the Polymorphism at Codon 54 of the Fatty Acid-Binding Protein 2 Gene. Arteriosclerosis, Thrombosis and Vascular Biology, 18, 1606-1610.
http://dx.doi.org/10.1161/01.ATV.18.10.1606
[21] Agren, J.J., Vidgren, H.M., Valve, R.S., Laakso, M. and Uusitupa, M.I. (2001) Postprandial Responses of Individual Fatty Acids in Subjects Homozygous for the Threonine- or Alanine-Encoding Allele in Codon 54 of the Intestinal Fatty Acid Binding Protein 2 Gene. The American Journal of Clinical Nutrition, 73, 31-35.
[22] Dworatzek, P.D., Hegele, R.A. and Wolever, T.M. (2004) Postprandial Lipemia in Subjects with the Threonine 54 Variant of the Fatty Acid-Binding Protein 2 Gene Is Dependent on the Type of Fat Ingested. The American Journal of Clinical Nutrition, 79, 1110-1117.
[23] Lefevre, M., Lovejoy, J.C., Smith, S.R., Delany, J.P., Champagne, C., Most, M.M., Denkins, Y., de Jonge, L., Rood, J. and Bray, G.A. (2005) Comparison of the Acute Response to Meals Enriched with Cisor Trans-Fatty Acids on Glucose and Lipids in Overweight Individuals with Differing FABP2 Genotypes. Metabolism, 54, 1652-1658.
http://dx.doi.org/10.1016/j.metabol.2005.06.015
[24] Mero, N., Syvänne, M. and Taskinen, M.R. (1998) Postprandial Lipid Metabolism in Diabetes. Atherosclerosis, 141, S53-S55.
http://dx.doi.org/10.1016/S0021-9150(98)00218-4
[25] Seino, Y., Nanjo, K., Tajima, N., Kadowaki, T., Kashiwagi, A., Araki, E., Ito, C., Inagaki, N., Iwamoto, Y., Kasuga, M., Hanafusa, T., Haneda, M. and Ueki, K. (2010) Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Journal of Diabetes Investigation, 1, 212-228.
http://dx.doi.org/10.1111/j.2040-1124.2010.00074.x
[26] Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18, 499-502.
[27] Expert Panel on Detection (2001) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel I II). Journal of the American Medical Association, 285, 2486-2497.
http://dx.doi.org/10.1001/jama.285.19.2486
[28] Ye, S., Dhillon, S., Ke, X., Collins, A.R. and Day, I.N. (2001) An Efficient Procedure for Genotyping Single Nucleotide Polymorphisms. Nucleic Acids Research, 29, Article ID: E88.
http://dx.doi.org/10.1093/nar/29.17.e88
[29] Zhao, T., Nzekebaloudou, M. and Lv, J. (2010) Ala54Thr Polymorphism of Fatty Acid-Binding Protein 2 Gene and Fasting Blood Lipids: A Meta-Analysis. Atherosclerosis, 210, 461-467.
http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.049
[30] Tahvanainen, E., Molin, M., Vainio, S., Tiret, L., Nicaud, V., Farinaro, E., Masana, L. and Ehnholm, C. (2000) Intestinal Fatty Acid Binding Protein Polymorphism at Codon 54 Is Not Associated with Postprandial Responses to Fat and Glucose Tolerance Tests in Healthy Young Europeans. Results from EARS II Participants. Atherosclerosis, 152, 317-325.
http://dx.doi.org/10.1016/S0021-9150(99)00488-8
[31] Gómez, L.C., Real, S.M., Ojeda, M.S., Gimenez, S., Mayorga, L.S. and Roqué, M. (2007) Polymorphism of the FABP2 Gene: A Population Frequency Analysis and an Association Study with Cardiovascular Risk Markers in Argentina. BMC Medical Genetics, 8, 39.
http://dx.doi.org/10.1186/1471-2350-8-39
[32] Almeida, J.C., Gross, J.L., Canani, L.H., Zelmanovitz, T., Perassolo, M.S. and Azevedo, M.J. (2010) The Ala54Thr Polymorphism of the FABP2 Gene Influences the Postprandial Fatty Acids in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology and Metabolism, 95, 3909-3917.
http://dx.doi.org/10.1210/jc.2009-2674
[33] Canani, L.H., Capp, C., Ng, D.P., Choo, S.G., Maia, A.L., Nabinger, G.B., Santos, K., Crispim, D., Roisemberg, I., Krolewski, A.S. and Gross, J.L. (2005) The Fatty Acid-Binding Protein-2 A54T Polymorphism Is Associated with Renal Disease in Patients with Type 2 Diabetes. Diabetes, 54, 3326-3330.
http://dx.doi.org/10.2337/diabetes.54.11.3326
[34] Albala, C., Santos, J.L., Cifuentes, M., Villarroel, A.C., Lera, L., Libermann, C., Angel, B. and Pérez-Bravo, F. (2004) Intestinal FABP2 A54T Polymorphism: Association with Insulin-Resistance and Obesity in Women. Obesity Research, 12, 340-345.
http://dx.doi.org/10.1038/oby.2004.42
[35] Kim, C.H., Yun, S.K., Byun, D.W., Yoo, M.H., Lee, K.U. and Suh, K.I. (2001) Codon 54 Polymorphism of the Fatty Acid Binding Protein 2 Gene Is Associated with Increased Fat Oxidation and Hyperinsulinemia but Not with Intestinal Fatty Acid Absorption in Korean Men. Metabolism, 50, 473-476.
http://dx.doi.org/10.1053/meta.2001.21022
[36] Yamada, K., Yuan, X., Ishiyama, S., Koyama, K., Ichikawa, F., Koyanagi, A., Koyama, W. and Nonaka, K. (1997) Association between Ala54Thr Substitution of the Fatty Acid Binding Protein 2 Gene with Insulin Resistance and Intra-Abdominal Fat Thickness in Japanese Men. Diabetologia, 40, 706-710.
http://dx.doi.org/10.1007/s001250050737
[37] Boullu-Sanchis, S., Lepretre, F., Hedelin, G., Donnet, J.P., Schaffer, P., Froguel, P. and Pinget, M. (1999) Type 2 Diabetes Mellitus: Association Study of Five Candidate Genes in an Indian Population of Guadeloupe, Genetic Contribution of FABP2 Polymorphism. Diabetes & Metabolism, 25, 150-156.
[38] Chiu, K.C., Chuang, L.M. and Yoon, C. (2001) The A54T Polymorphism at the Intestinal Fatty Acid Binding Protein 2 Is Associated with Insulin Resistance in Glucose Tolerant Caucasians. BMC Genetics, 2, 7-13.
http://dx.doi.org/10.1186/1471-2156-2-7
[39] Duarte, N.L., Colagiuri, S., Palu, T., Wang, X.L. and Wilcken, D.E. (2003) Obesity, Type II Diabetes and the Ala54Thr Polymorphism of Fatty Acid Binding Protein 2 in the Tongan Population. Molecular Genetics and Metabolism, 79, 183-188.
http://dx.doi.org/10.1016/S1096-7192(03)00088-X
[40] Hegele, R.A., Harris, S.B., Hanley, A.J., Sadikian, S., Connelly, P.W. and Zinman, B. (1996) Genetic Variation of Intestinal Fatty Acid-Binding Protein Associated with Variation in Body Mass in Aboriginal Canadians. The Journal of Clinical Endocrinology and Metabolism, 81, 4334-4337.
[41] Rissanen, J., Pihlajamäki, J., Heikkinen, S., Kekäläinen, P., Kuusisto, J. and Laakso, M. (1997) The Ala54Thr Polymorphism of the Fatty Acid Binding Protein 2 Gene Does Not Influence Insulin Sensitivity in Finnish Nondiabetic and NIDDM Subjects. Diabetes, 46, 711-712.
http://dx.doi.org/10.2337/diab.46.4.711
[42] Ito, K., Nakatani, K., Fujii, M., Katsuki, A., Tsuchihashi, K., Murata, K., Goto, H., Yano, Y., Gabazza, E.C., Sumida, Y. and Adachi, Y. (1999) Codon 54 Polymorphism of the Fatty Acid Binding Protein Gene and Insulin Resistance in the Japanese Population. Diabetic Medicine, 16, 119-124.
http://dx.doi.org/10.1046/j.1464-5491.1999.00034.x
[43] Ishii, T., Hirose, H., Kawai, T., Hayashi, K., Maruyama, H., Saito, I. and Saruta, T. (2001) Effects of Intestinal Fatty Acid-Binding Protein Gene Ala54Thr Polymorphism and Beta3-Adrenergic Receptor Gene Trp64Arg Polymorphism on Insulin Resistance and Fasting Plasma Glucose in Young to Older Japanese Men. Metabolism, 50, 1301-1307.
http://dx.doi.org/10.1053/meta.2001.27228
[44] Xiang, K., Zheng, T., Jia, W., Sun, D., Ding, W., Lu, J. and Tang, J. (1999) The Impact of Codon 54 Variation in Intestinal Fatty Acid Binding Protein Gene on the Pathogenesis of Diabetes Mellitus in Chinese. Chinese Medical Journal (English Edition), 112, 99-102.
[45] Lei, H.H., Coresh, J., Shuldiner, A.R., Boerwinkle, E. and Brancati, F.L. (1999) Variants of the Insulin Receptor Substrate-1 and Fatty Acid Binding Protein 2 Genes and the Risk of Type 2 Diabetes, Obesity and Hyperinsulinemia in African-Americans: The Atherosclerosis Risk in Communities Study. Diabetes, 48, 1868-1872.
http://dx.doi.org/10.2337/diabetes.48.9.1868
[46] Weiss, E.P., Brown, M.D., Shuldiner, A.R. and Hagberg, J.M. (2002) Fatty Acid Binding Protein-2 Gene Variants and Insulin Resistance: Gene and Gene-Environment Interaction Effects. Physiological Genomics, 10, 145-157.
[47] Zhao, T., Zhao, J., Lv, J. and Nzekebaloudou, M. (2011) Meta-Analysis on the Effect of the Ala54Thr Polymorphism of the Fatty Acid-Binding Protein 2 Gene on Body Mass Index. Nutrition, Metabolism & Cardiovascular Disease, 21, 823-829.
http://dx.doi.org/10.1016/j.numecd.2010.02.020
[48] de Luis, D.A., Aller, R., Izaola, O., Sagrado, M.G. and Conde, R. (2006) Influence of ALA54THR Polymorphism of Fatty Acid Binding Protein 2 on Lifestyle Modification Response in Obese Subjects. Annals of Nutrition and Metabolism, 50, 354-360.
http://dx.doi.org/10.1159/000094299
[49] Huguenin, G.V. and Rosa, G. (2010) The Ala Allele in the PPAR-Gamma 2 Gene Is Associated with Reduced Risk of Type 2 Diabetes Mellitus in Caucasians and Improved Insulin Sensitivity in Overweight Subjects. British Journal of Nutrition, 104, 488-497.
http://dx.doi.org/10.1017/S0007114510000851
[50] Stumvoll, M. and Häring, H. (2002) The Peroxisome Proliferator-Activated Receptor-Gamma 2 Pro12Ala Polymorphism. Diabetes, 51, 2341-2347.
http://dx.doi.org/10.2337/diabetes.51.8.2341
[51] Lindi, V., Sivenius, K., Niskanen, L., Laakso, M. and Uusitupa, M. (2001) Effect of the Pro12Ala Polymorphism of the PPAR-Gamma 2 Gene on Long-Term Weight Change in Finnish Non-Diabetic Subjects. Diabetologia, 44, 925-926.
http://dx.doi.org/10.1007/s001250100558
[52] Ludovico, O., Pellegrini, F., Di Paola, R., Minenna, A., Mastroianno, S., Cardellini, M., Marini, M.A., Andreozzi, F., Vaccaro, O., Sesti, G. and Trischitta, V. (2007) Heterogeneous Effect of Peroxisome Proliferator-Activated Receptor Gamma 2 Ala12 Variant on Type 2 Diabetes Risk. Obesity, 15, 1076-1081.
http://dx.doi.org/10.1038/oby.2007.617
[53] Mori, H., Ikegami, H., Kawaguchi, Y., Seino, S., Yokoi, N., Takeda, J., Inoue, I., Seino, Y., Yasuda, K., Hanafusa, T., Yamagata, K., Awata, T., Kadowaki, T., Hara, K., Yamada, N., Gotoda, T., Iwasaki, N., Iwamoto, Y., Sanke, T., Nanjo, K., Oka, Y., Matsutani, A., Maeda, E. and Kasuga, M. (2001) The Pro12Ala Substitution in PPAR-c Is Associated with Resistance to Development of Diabetes in the General Population Possible Involvement in Impairment of Insulin Secretion in Individuals with Type 2 Diabetes. Diabetes, 50, 891-894.
http://dx.doi.org/10.2337/diabetes.50.4.891
[54] Mancini, F.P., Vaccaro, O., Sabatino, L., Tufano, A., Rivellese, A.A., Riccardi, G. and Colantuoni, V. (1999) Pro12Ala Substitution in the Peroxisome Proliferator-Activated Receptor-Gamma 2 Is Not Associated with Type 2 Diabetes. Diabetes, 48, 1466-1468.
http://dx.doi.org/10.2337/diabetes.48.7.1466
[55] Masugi, J., Tamori, Y., Mori, H., Koike, T. and Kasuga, M. (2000) Inhibitory Effect of a Proline-to-Alanine Substitution at Codon 12 of Peroxisome Proliferator-Activated Receptor-Gamma 2 on Thiazolidinedione-Induced Adipogenesis. Biochemical and Biophysical Research Communications, 268, 178-182.
http://dx.doi.org/10.1006/bbrc.2000.2096
[56] Shah, A., Rader, D.J. and Millar, J.S. (2010) The Effect of PPAR-Alpha Agonism on Apolipoprotein Metabolism in Humans. Atherosclerosis, 210, 35-40.
http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.010

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.