Share This Article:

IL-1β, TNF-α and Sambucus nigra Reactive Serum Proteins as Biomarkers of Mild Cognitive Impairment and Alzheimer Disease Progression

Full-Text HTML XML Download Download as PDF (Size:1044KB) PP. 99-109
DOI: 10.4236/aad.2015.44010    3,409 Downloads   4,012 Views  

ABSTRACT

Amyloid-β (Aβ) can induce a chronic inflammatory immune response that is associated, amongst many others, to abnormal glycosylation, inducible nitric oxide synthase (iNOS) and nitric oxide (NO). The relation between development of Mild Cognitive Impairment (MCI) and Alzheimer’s disease progression and these serum markers has not been evaluated. Serum levels of iNOs, NO, TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 are determined with commercially available kits. Sialylation of albumin-free serum patterns is determined by Western blot analysis with Sambucus nigra (specific for sialic acid attached to terminal galactose in α2,6 linkage) lectin. Apolipoprotein E (ApoE) haplotype is determined by Western blot using specific anti-ApoE 2, 3 or 4 antibodies. A mini-mental state examination (MMSE) test is also performed in the 10 MCI patients, 19 Alzheimer’s disease (AD) patients and 46 healthy age-matched controls evaluated. The results show an increase of iNOS in MCI and AD but significantly higher NO concentrations are only found in MCI patients. TNF-α and IL-1β concentrations are the only significantly increased cytokines in MCI patients; no differences between control and MCI or AD patients are found in regard to the other cytokines. An abnormal MMSE test result only correlates with a decrease in serum NO concentration in MCI patients. The terminal sialic acid linkage pattern of serum proteins also shows highly significant differences between MCI and AD patient. ApoE3/4 or 4/4 haplotypes are characteristic of MCI and AD patients. Our results imply that increased serum TNF-α, IL-1β, iNOS, NO and alterations of serum proteins glycosylation patterns in adult individuals with an abnormal MMSE test may serve as an early biomarker of MCI and AD development.

Cite this paper

Castillo, L. , Moreno, E. , Rodríguez-Agudelo, Y. , Chávez-Oliveros, M. , Trujillo, Z. , Espinosa, B. , Rodriguez-Maldonado, E. , Montaño, L. and Guevara, J. (2015) IL-1β, TNF-α and Sambucus nigra Reactive Serum Proteins as Biomarkers of Mild Cognitive Impairment and Alzheimer Disease Progression. Advances in Alzheimer's Disease, 4, 99-109. doi: 10.4236/aad.2015.44010.

References

[1] Broussard, L., Myers, R. and Lemoine, J. (2009) Preparing Pediatric Nurses: The Role of Simulation-Based Learning. Issues in Comprehensive Pediatric Nursing, 32, 4-15.
http://dx.doi.org/10.1080/01460860802610178
[2] Heneka, M.T., Kummer, M.P. and Latz, E. (2014) Innate Immune Activation in Neurodegenerative Disease. Nature Reviews Immunology, 14, 463-477. http://dx.doi.org/10.1038/nri3705
[3] Monsonego, A., Imitola, J., Zota, V., Oida, T. and Weiner, H.L. (2003) Microglia-Mediated Nitric Oxide Cytotoxicity of T Cells Following Amyloid β-Peptide Presentation to Th1 Cells. Journal of immunology, 171, 2216-2224. http://dx.doi.org/10.4049/jimmunol.171.5.2216
[4] Streit, W.J., Walter, S.A. and Pennell, N.A. (1999) Reactive Microgliosis. Progress in Neurobiology, 57, 563-581. http://dx.doi.org/10.1016/S0301-0082(98)00069-0
[5] Schedin-Weiss, S., Winblad, B. and Tjernberg, L.O. (2014) The Role of Protein Glycosylation in Alzheimer Disease. FEBS Journal, 281, 46-62. http://dx.doi.org/10.1111/febs.12590
[6] Tan, J., Town, T., Suo, Z., Wu, Y., Song, S., Kundtz, A., et al. (1999) Induction of CD40 on Human Endothelial Cells by Alzheimer’s β-Amyloid Peptides. Brain Research Bulletin, 50, 143-148.
http://dx.doi.org/10.1016/S0361-9230(99)00122-7
[7] Rubio-Perez, J.M. and Morillas-Ruiz, J.M. (2012) A Review: Inflammatory Process in Alzheimer’s Disease, Role of Cytokines. Scientific World Journal, 2012, Article ID: 756357.
http://dx.doi.org/10.1100/2012/756357
[8] Szczepanik, A.M., Funes, S., Petko, W. and Ringheim, G.E. (2001) IL-4, IL-10 and IL-13 Modulate a β(1-42)-Induced Cytokine and Chemokine Production in Primary Murine Microglia and a Human Monocyte Cell Line. Journal of Neuroimmunology, 113, 49-62. http://dx.doi.org/10.1016/S0165-5728(00)00404-5
[9] Rota, E., Bellone, G., Rocca, P., Bergamasco, B., Emanuelli, G. and Ferrero, P. (2006) Increased Intrathecal TGF-β1, But Not IL-12, IFN-Gamma and IL-10 Levels in Alzheimer’s Disease Patients. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 27, 33-39. http://dx.doi.org/10.1007/s10072-006-0562-6
[10] Backman, L., Jones, S., Berger, A.K., Laukka, E.J. and Small, B.J. (2004) Multiple Cognitive Deficits during the Transition to Alzheimer’s Disease. Journal of Internal Medicine, 256, 195-204.
http://dx.doi.org/10.1111/j.1365-2796.2004.01386.x
[11] Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas I, et al. Inhibition of IL-12/IL-23 signaling Vom Berg, J., Prokop, S., Miller, K.R., Obst, J., Kalin, R.E., Lopategui-Cabezas, I., et al. (2012) Inhibition of IL-12/ IL-23 Signaling Reduces Alzheimer’s Disease-Like Pathology and Cognitive Decline. Nature Medicine, 18, 1812-1819. http://dx.doi.org/10.1038/nm.2965
[12] Swardfager, W., Lanctot, K., Rothenburg, L., Wong, A., Cappell, J. and Herrmann, N. (2010) A Meta-Analysis of Cytokines in Alzheimer’s Disease. Biological Psychiatry, 68, 930-941.
http://dx.doi.org/10.1016/j.biopsych.2010.06.012
[13] Guevara, J., Espinosa, B., Zenteno, E., Vazguez, L., Luna, J., Perry, G., et al. (1998) Altered Glycosylation Pattern of Proteins in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 57, 905-914. http://dx.doi.org/10.1097/00005072-199810000-00003
[14] Marklová, E.A.Z. and Valis, M. (2012) Microheterogeneity of Some Serum Glycoproteins in Neurodegenerative Diseases. Journal of the Neurological Sciences, 314, 20-25.
http://dx.doi.org/10.1016/j.jns.2011.11.006
[15] Maguire, T.M., Gillian, A.M., O’Mahony, D., Coughlan, C.M., Dennihan, A. and Breen, K.C. (1994) A Decrease in Serum Sialyltransferase Levels in Alzheimer’s Disease. Neurobiology of Aging, 15, 99-102. http://dx.doi.org/10.1016/0197-4580(94)90149-X
[16] Kitazume, S., Tachida, Y., Kato, M., Yamaguchi, Y., Honda, T., Hashimoto, Y., et al. (2010) Brain Endothelial Cells Produce Amyloid β from Amyloid Precursor Protein 770 and Preferentially Secrete the O-Glycosylated Form. The Journal of Biological Chemistry, 285, 40097-40103.
http://dx.doi.org/10.1074/jbc.M110.144626
[17] Town, T., Tan, J. and Mullan, M. (2001) CD40 Signaling and Alzheimer’s Disease Pathogenesis. Neurochemistry International, 39, 371-380. http://dx.doi.org/10.1016/S0197-0186(01)00044-4
[18] Rajadas, J., Sun, W., Li, H., Inayathullah, M., Cereghetti, D., Tan, A., et al. (2013) Enhanced Aβ1-40 Production in Endothelial Cells Stimulated with Fibrillar Aβ1-42. PLoS ONE, 8, e58194.
http://dx.doi.org/10.1371/journal.pone.0058194
[19] Fernandez-Vizarra, P., Fernandez, A.P., Castro-Blanco, S., Encinas, J.M., Serrano, J., Bentura, M.L., et al. (2004) Expression of Nitric Oxide System in Clinically Evaluated Cases of Alzheimer’s Disease. Neurobiology of Disease, 15, 287-305. http://dx.doi.org/10.1016/j.nbd.2003.10.010
[20] McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H., et al. (2011) The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7, 263-269.
http://dx.doi.org/10.1016/j.jalz.2011.03.005
[21] Luis, C.A., Abdullah, L., Paris, D., Quadros, A., Mullan, M., Mouzon, B., et al. (2009) Serum β-Amyloid Correlates with Neuropsychological Impairment. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16, 203-218. http://dx.doi.org/10.1080/13825580802411766
[22] Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., et al. (2011) The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7, 270-279.
http://dx.doi.org/10.1016/j.jalz.2011.03.008
[23] Segal-Gidan, F., Cherry, D., Jones, R., Williams, B., Hewett, L., Chodosh, J., et al. (2011) Alzheimer’s Disease Management Guideline: Update 2008. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7, e51-e59.
[24] México SdS. Mini examen del estado mental. Normas oficiales mexicanas.
[25] Sharp, E.S. and Gatz, M. (2011) Relationship between Education and Dementia: An Updated Systematic Review. Alzheimer Disease and Associated Disorders, 25, 289-304.
http://dx.doi.org/10.1097/WAD.0b013e318211c83c
[26] Vemuri, P., Lesnick, T.G., Przybelski, S.A., Knopman, D.S., Roberts, R.O., Lowe, V.J., et al. (2012) Effect of Lifestyle Activities on Alzheimer Disease Biomarkers and Cognition. Annals of Neurology, 72, 730-738.
http://dx.doi.org/10.1002/ana.23665
[27] Chene, G., Beiser, A., Au, R., Preis, S.R., Wolf, P.A., Dufouil, C., et al. (2015) Gender and Incidence of Dementia in the Framingham Heart Study from Mid-Adult Life. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 11, 310-320. http://dx.doi.org/10.1016/j.jalz.2013.10.005
[28] Katusic, Z.S. and Austin, S.A. (2014) Endothelial Nitric Oxide: Protector of a Healthy Mind. European Heart Journal, 35, 888-894. http://dx.doi.org/10.1093/eurheartj/eht544
[29] Abdullah, L., Luis, C., Paris, D., Ait-Ghezala, G., Mouzon, B., Allen, E., et al. (2009) High Serum Aβ and Vascular Risk Factors in First-Degree Relatives of Alzheimer’s Disease Patients. Molecular Medicine, 15, 95-100. http://dx.doi.org/10.2119/molmed.2008.00118
[30] Faro, M.L., Fox, B., Whatmore, J.L., Winyard, P.G. and Whiteman, M. (2014) Hydrogen Sulfide and Nitric Oxide Interactions in Inflammation. Nitric Oxide, 41, 38-47.
[31] Tamaoka, A., Fukushima, T., Sawamura, N., Ishikawa, K., Oguni, E., Komatsuzaki, Y., et al. (1996) Amyloid Beta Protein in Plasma from Patients with Sporadic Alzheimer’s Disease. Journal of the Neurological Sciences, 141, 65-68. http://dx.doi.org/10.1016/0022-510X(96)00143-8
[32] Soriano, F.X., Galbete, J.L. and Forloni, G. (2003) Effect of Beta-Amyloid on Endothelial Cells: Lack of Direct Toxicity, Enhancement of MTT-Induced Cell Death and Intracellular Accumulation. Neurochemistry International, 43, 251- 261. http://dx.doi.org/10.1016/S0197-0186(03)00008-1
[33] Lodeiro, M., Ibanez, C., Cifuentes, A., Simo, C. and Cedazo-Minguez, A. (2014) Decreased Cerebrospinal Fluid Levels of L-Carnitine in Non-Apolipoprotein e4 Carriers at Early Stages of Alzheimer’s Disease. Journal of Alzheimer’s Disease: JAD, 41, 223-232.
[34] Sachdeva, R., Babbar, R., Puri, V., Agarwal, S. and Krishana, B. (2011) Correlation between Cognitive Functions and Nitric Oxide Levels in Patients with Dementia. Clinical EEG and Neuroscience, 42, 190-194.
http://dx.doi.org/10.1177/155005941104200309
[35] Ravaglia, G., Forti, P., Maioli, F., Bianchi, G., Martelli, M., Talerico, T., et al. (2004) Plasma Amino Acid Concentrations in Patients with Amnestic Mild Cognitive Impairment or Alzheimer Disease. The American Journal of Clinical Nutrition, 80, 483-488.
[36] Tohgi, H., Abe, T., Yamazaki, K., Murata, T., Isobe, C. and Ishizaki, E. (1998) The Cerebrospinal Fluid Oxidized NO Metabolites, Nitrite and Nitrate, in Alzheimer’s Disease and Vascular Dementia of Binswanger Type and Multiple Small Infarct Type. Journal of Neural Transmission, 105, 1283-1291.
http://dx.doi.org/10.1007/s007020050131
[37] Barbaresi, P., Fabri, M. and Mensa, E. (2014) Characterization of NO-Producing Neurons in the Rat Corpus Callosum. Brain and Behavior, 4, 317-336. http://dx.doi.org/10.1002/brb3.218
[38] Batra, S., Iosif, C., Al-Hijji, J. and Larsson, I. (2003) Important Differences in Nitric Oxide Synthase Activity and Predominant Isoform in Reproductive Tissues from Human and Rat. Reproductive Biology and Endocrinology, 1, 10. http://dx.doi.org/10.1186/1477-7827-1-10
[39] Lowry, J.L., Brovkovych, V., Zhang, Y. and Skidgel, R.A. (2013) Endothelial Nitric-Oxide Synthase Activation Generates an Inducible Nitric-Oxide Synthase-Like Output of Nitric Oxide in Inflamed Endothelium. The Journal of Biological Chemistry, 288, 4174-4193.
http://dx.doi.org/10.1074/jbc.M112.436022
[40] Lane, T. and Lachmann, H.J. (2011) The Emerging Role of Interleukin-1β in Autoinflammatory Diseases. Current Allergy and Asthma Reports, 11, 361-368. http://dx.doi.org/10.1007/s11882-011-0207-6
[41] Cervelli, T., Panetta, D., Navarra, T., Andreassi, M.G., Basta, G., Galli, A., et al. (2014) Effects of Single and Fractionated Low-Dose Irradiation on Vascular Endothelial Cells. Atherosclerosis, 235, 510-518.
http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.932
[42] Lubrano, V. and Balzan, S. (2014) LOX-1 and ROS, Inseparable Factors in the Process of Endothelial Damage. Free Radical Research, 48, 841-848. http://dx.doi.org/10.3109/10715762.2014.929122
[43] Liu, L. and Chan, C. (2014) The Role of Inflammasome in Alzheimer’s Disease. Ageing Research Reviews, 15C, 6-15. http://dx.doi.org/10.1016/j.arr.2013.12.007
[44] Peumans, W.J., Roy, S., Barre, A., Rouge, P., van Leuven, F. and van Damme, E.J. (1998) Elderberry (Sambucus nigra) Contains Truncated Neu5Ac(α-2,6)Gal/GalNAc-Binding Type 2 Ribosome-Inactivating Proteins. FEBS Letters, 425, 35-39. http://dx.doi.org/10.1016/S0014-5793(98)00193-8
[45] Limon, I.D., Mendieta, L., Diaz, A., Chamorro, G., Espinosa, B., Zenteno, E., et al. (2009) Neuroprotective Effect of Alpha-Asarone on Spatial Memory and Nitric Oxide Levels in Rats Injected with Amyloid-β25-35. Neuroscience Letters, 453, 98-103. http://dx.doi.org/10.1016/j.neulet.2009.02.011
[46] Espinosa, B., Guevara, J., Hernandez, P., Slomianny, M.C., Guzman, A., Martinez-Cairo, S., et al. (2003) Characterization of an O-Glycosylated Plaque-Associated Protein from Alzheimer Disease Brain. Journal of Neuropathology and Experimental Neurology, 62, 34-41.
[47] Hanasaki, K., Varki, A., Stamenkovic, I. and Bevilacqua, M.P. (1994) Cytokine-Induced Beta-Galactoside Alpha-2,6- Sialyltransferase in Human Endothelial Cells Mediates Alpha 2,6-Sialylation of Adhesion Molecules and CD22 Ligands. The Journal of Biological Chemistry, 269, 10637-10643.
[48] Ngoh, G.A., Watson, L.J., Facundo, H.T. and Jones, S.P. (2011) Augmented O-GlcNAc Signaling Attenuates Oxidative Stress and Calcium Overload in Cardiomyocytes. Amino Acids, 40, 895-911.
http://dx.doi.org/10.1007/s00726-010-0728-7
[49] Lathe, R., Sapronova, A. and Kotelevtsev, Y. (2014) Atherosclerosis and Alzheimer-Diseases with a Common Cause? Inflammation, Oxysterols, Vasculature. BMC Geriatrics, 14, 36.
http://dx.doi.org/10.1186/1471-2318-14-36
[50] Graybeal, J.J., Bozzelli, P.L., Graybeal, L.L., Groeber, C.M., McKnight, P.E., Cox, D.N., et al. (2015) Human ApoE epsilon4 Alters Circadian Rhythm Activity, IL-1β, and GFAP in CRND8 Mice. Journal of Alzheimer’s Disease: JAD, 43, 823-834.
[51] Gale, S.C., Gao, L., Mikacenic, C., Coyle, S.M., Rafaels, N., Murray Dudenkov, T., et al. (2014) APOepsilon4 Is Associated with Enhanced in Vivo Innate Immune Responses in Human Subjects. The Journal of Allergy and Clinical Immunology, 134, 127-134. http://dx.doi.org/10.1016/j.jaci.2014.01.032
[52] Qiu, W.Q., Zhu, H., Dean, M., Liu, Z., Vu, L., Fan, G., et al. (2015) Amyloid-Associated Depression and ApoE4 Allele: Longitudinal Follow-Up for the Development of Alzheimer’s Disease. International Journal of Geriatric Psychiatry, In Press. http://dx.doi.org/10.1002/gps.4339

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.