Prebiotic-Like Effects of SweetPearl® Maltitol through Changes in Caecal and Fecal Parameters

Abstract

Prebiotic-like effects of maltitol were investigated supplementing two groups of rats with either 5% maltodextrin (control group) or 5% maltitol (maltitol group). A third group was supplemented with 5% maltitol at first and then with 5% maltodextrin (maltitol/maltodextrin group). Faecal parameters were monitored throughout the experiment and caecal parameters at the end. The weights of caecal content and caecal wall were significantly higher in the maltitol group than in the control group, but not in the maltitol/maltodextrin group. Propionic acid concentration was significantly higher in the maltitol group compared to both control and maltitol/maltodextrin group. Faecal parameters were also influenced by the dietary supplementation with maltitol: the amount of dry matter in feces decreased and alpha-glucosidase activity increased. These effects lasted 28 days in the maltitol only group, whereas they stopped some days after the switch to maltodextrin in the maltitol/maltodextrin group. Maltitol could induce prebiotic-like effects.

Share and Cite:

C. Thabuis, A. Herbomez, F. Desailly, F. Ringard, D. Wils and L. Guérin-Deremaux, "Prebiotic-Like Effects of SweetPearl® Maltitol through Changes in Caecal and Fecal Parameters," Food and Nutrition Sciences, Vol. 3 No. 10, 2012, pp. 1375-1381. doi: 10.4236/fns.2012.310180.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Livesey, “Health Potential of Polyols as Sugar Replacers, with Emphasis on Low Glycaemic Properties,” Nutrition Research Reviews, Vol. 16, No. 2, 2003, pp. 163-191. doi:10.1079/NRR200371
[2] T. Matsuo, “Lactic Acid Production from Sugar Alcohol, Maltitol and Lactitol, in Human Whole Saliva,” Shigaku, Vol. 60, No. 6, 2003, pp. 760-775.
[3] T. Oku, M. Akiba, M. H. Lee, S. J. Moon and N. Hosoya, “Metabolic Fate of Ingested [14C]-Maltitol in Man,” Journal of Nutritional Science and Vitaminology (Tokyo), Vol. 37, No. 5, 1991, pp. 529-544. doi:10.3177/jnsv.37.529
[4] G. A. Koutsou, D. M. Storey, A. Lee, A. Zumbe, B. Flourie, Y. leBot and P. Olivier, “Dose-Related Gastrointestinal Response to the Ingestion of Either Isomalt, Lactitol or Maltitol in Milk Chocolate,” European Journal of Clinical Nutrition, Vol. 50, No. 1, 1996, pp. 17-21.
[5] A. Ruskone-Fourmestraux, A. Attar, D. Chassard, B. Coffin, F. Bornet and Y. Bouhnik, “A Digestive Tolerance Study of Maltitol after Occasional and Regular Consumption in Healthy Humans,” European Journal of Clinical Nutrition, Vol. 57, No. 1, 2003, pp. 26-30. doi:10.1038/sj.ejcn.1601516
[6] D. M. Storey, G. A. Koutsou, A. Lee, A. Zumbe, P. Olivier, Y. Le Bot and B. Flourie, “Tolerance and Breath Hydrogen Excretion Following Ingestion of Maltitol Incorporated at Two Levels into Milk Chocolate Consumed by Healthy Young Adults with and without Fasting,” Journal of Nutrition, Vol. 128, No. 3, 1996, pp. 587-592.
[7] C. Thabuis, M. Cazaubiel, M. Pichelin, D. Wils and L. Guerin-Deremaux, “Short-Term Digestive Tolerance of Chocolate Formulated with Maltitol in Children,” International Journal of Food Sciences and Nutrition, Vol. 61, No. 7, 2010, pp. 728-738. doi:10.3109/09637481003766812
[8] G. R. Gibson and M. B. Roberfroid, “Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics,” Journal of Nutrition, Vol. 125, No. 6, 1995, pp. 1401-1412.
[9] M. N. Woods and S. L. Gorbach, “Influences of Fibres on the Ecology of Intestinal Flora,” In: CRC Handbook of Dietary Fiber in Human Nutrition, 3rd Edition, CRC Press, Boca Raton, pp. 257-269.
[10] M. B. Roberfroid, “Functional Effects of Food Components and the Gastrointestinal System: Chicory Fructooligosaccharides,” Nutrition Reviews, Vol. 54, No. 11, 1996, pp. S38-S42. doi:10.1111/j.1753-4887.1996.tb03817.x
[11] M. B. Roberfroid, “Prebiotics: The Concept Revisited,” Journal of Nutrition, Vol. 137, No. 3, 2007, pp. 830S-837S.
[12] B. Kleessen, L. Hartmann and M. Blaut, “Oligofructose and Long-Chain Inulin: Influence on the Gut Microbial Ecology of Rats Associated with a Human Faecal Flora,” British Journal of Nutrition, Vol. 86, No. 2, 2001, pp. 291-300. doi:10.1079/BJN2001403
[13] F. R. Bornet, “Undigestible Sugars in Food Products,” American Journal of Clinical Nutrition, Vol. 59, No. 3, 1994, pp. 763S-769S.
[14] C. Duggan, J. Gannon and W. A. Walker, “Protective Nutrients and Functional Foods for the Gastrointestinal Tract,” American Journal of Clinical Nutrition, Vol. 75, No. 5, 2002, pp. 789-808.
[15] M. S. Geier, R. N. Butler and G. S. Howarth, “Probiotics, Prebiotics and Synbiotics: A Role in Chemoprevention for Colorectal Cancer?” Cancer Biology and Therapy, Vol. 5, No. 10, 2006, pp. 1265-1269. doi:10.4161/cbt.5.10.3296
[16] T. N. Imfeld, “Clinical Caries Studies with Polyalcohols. A Literature Review,” Schweiz Monatsschreitung Zahnmedecine, Vol. 104, No. 8, 1994, pp. 941-945.
[17] E. J. Lee, B. H. Jin, D. I. Paik and I. K. Hwang, “Preventive Effects of Sugar-Free Chewing Gum Containing Maltitol on Dental Caries in Situ,” Food Science and Biotechnology, Vol. 18, No. 2, 2009, pp. 432-435.
[18] F. Bornet, C. Alamowitch and G. Slama, “Volatile Fatty Acids. Effect on Glucose Metabolism?” Revue des Praticiens, Vol. 44, No. 8, 1994, pp. 1051-1055.
[19] K. C. Ellwood, “Methods Available to Estimate the Energy Values of Sugar Alcohols,” American Journal of Clinical Nutrition, Vol. 62, No. 5, 1995, pp. 1169S-1174S.
[20] E. Beards, K. Tuohy and G. Gibson, “A Human Volunteer Study to Assess the Impact of Confectionery Sweeteners on the Gut Microbiota Composition,” British Journal of Nutrition, Vol. 104, No. 5, 2012, pp. 701-708. doi:10.1017/S0007114510001078
[21] E. G. van den Heuvel, D. Wils, W. J. Pasman, M. H. Saniez and A. F. Kardinaal, “Dietary Supplementation of Different Doses of NUTRIOSE FB, a Fermentable Dextrin, Alters the Activity of Faecal Enzymes in Healthy Men,” European Journal of Nutrition, Vol. 44, No. 7, 2005, pp. 445-451. doi:10.1007/s00394-005-0552-0
[22] J. M. Lecerf, F. Depeint, E. Clerc, Y. Dugenet, C. N. Niamba, L. Rhazi, A. Cayzeele, G. Abdelnour, A. Jaruga, H. Younes, H. Jacobs, G. Lambrey, A. M. M. Abdelnour and P. R. Pouillart, “Xylo-Oligosaccharide (XOS) in Combination with Inulin Modulates Both the Intestinal Environment and Immune Status in Healthy Subjects, While XOS Alone Only Shows Prebiotic Properties,” British Journal of Nutrition, in press.
[23] J. H. Cummings, G. T. Macfarlane and H. N. Englyst, “Prebiotic Digestion and Fermentation,” American Journal of Clinical Nutrition, Vol. 73, No. 2, 2001, pp. 415S420S.
[24] G. R. Gibson, E. R. Beatty, X. Wang and J. H. Cummings, “Selective Stimulation of Bifidobacteria in the Human Colon by Oligofructose and Inulin,” Gastroenterology, Vol. 108, No. 4, 1995, pp. 975-982. doi:10.1016/0016-5085(95)90192-2
[25] T. M. Gloster, J. P. Turkenburg, J. R. Potts, B. Henrissat and G. J. Davies, “Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora,” Chemical Biology, Vol. 15, No. 10, 2008, pp. 1058-1067. doi:10.1016/j.chembiol.2008.09.005
[26] J. A. Parnell and R. A. Reimer, “Prebiotic Fibres DoseDependently Increase Satiety Hormones and Alter Bacteroidetes and Firmicutes in Lean and Obese JCR:LA-cp Rats,” British Journal of Nutrition, Vol. 107, No. 4, 2012, pp. 601-613. doi:10.1017/S0007114511003163
[27] T. Oku, R. Hongo and S. Nakamura, “Suppressive Effect of Cellulose on Osmotic Diarrhea Caused by Maltitol in Healthy Female Subjects,” Journal of Nutritional Science and Vitaminology (Tokyo), Vol. 54, No. 4, pp. 309-314.
[28] J. M. Campbell, G. C. Fahey Jr. and B. W. Wolf, “Selected Indigestible Oligosaccharides Affect Large Bowel Mass, Cecal and Fecal Short-Chain Fatty Acids, pH and Microflora in Rats,” Journal of Nutrition, Vol. 127, No. 1, 1997, pp. 130-136.
[29] M. Nyman, “Fermentation and Bulking Capacity of Indigestible Carbohydrates: The Case of Inulin and Oligofructose,” British Journal of Nutrition, Vol. 87, No. 2, 2002, pp. S163-S168. doi:10.1079/BJN/2002533
[30] E. Hosseini, C. Grootaert, W. Verstraete and T. van de Wiele, “Propionate as a Health-Promoting Microbial Metabolite in the Human Gut,” Nutrition Reviews, Vol. 69, No. 5, 2011, pp. 245-258. doi:10.1111/j.1753-4887.2011.00388.x
[31] J. Boillot, C. Alamowitch, A. M. Berger, J. Luo, F. Bruzzo, F. R. Bornet and G. Slama, “Effects of Dietary Propionate on Hepatic Glucose Production, Whole-Body Glucose Utilization, Carbohydrate and Lipid Metabolism in Normal Rats,” British Journal of Nutrition, Vol. 73, No. 2, 1995, pp. 241-251. doi:10.1079/BJN19950026
[32] J. W. Anderson and S. R. Bridges, “Short-Chain Fatty Acid Fermentation Products of Plant Fiber Affect Glucose Metabolism of Isolated Rat Hepatocytes,” Proceedings of Society for Experimental Biology and Medecine, Vol. 177, No. 2, 1984, pp. 372-376.
[33] T. Todesco, A. V. Rao, O. Bosello and D. J. Jenkins, “Propionate Lowers Blood Glucose and Alters Lipid Metabolism in Healthy Subjects,” American Journal of Clinical Nutrition, Vol. 54, No. 5, 1991, pp. 860-865

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.