JMMCE> Vol.11 No.4, April 2012

Review of Green Polymer Nanocomposites

DownloadDownload as PDF (Size:776KB) Full-Text HTML PP. 385-416   DOI:


Recently, attention has been drawn to the use of bio-reinforced composites in automotive, construction, packaging and medical applications due to increased concern for environmental sustainability. Green polymer nanocomposites show unique properties of combining the advantages of natural fillers and organic polymers. Plant fibers are found suitable to reinforce polymers. They have relatively high strength and stiffness, low cost of acquisition, low density and produce low CO2 emission. They are also biodegradable and are annually renewable compared to other fibrous materials. Organic polymers on the other hand, are desirable because they are either recyclable or biodegradable without causing environmental hazards. This paper reviews current research efforts, techniques of production, trends, challenges and prospects in the field of green nanocomposites.


Cite this paper

S. Adeosun, G. Lawal, S. Balogun and E. Akpan, "Review of Green Polymer Nanocomposites," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 4, 2012, pp. 385-416.


[1] Hay, J.N.; Shaw, S.J. Nanocomposites—properties and applications. Available online: (accessed on August 15, 2010)
[2] Njuguna, J.; Pielichowski, K.; Desai, S. Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 2008, 19, 947-959.
[3] Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers—a review. Polish J. Environ. Stud. 2010, 19, 255-266.
[4] TPA Plast global Engineering Nanocomposite polymers. (accessed on 20 August 2010).
[5] Drzal, L.T. Sustainable Biodegradable Green Nanocomposites from Bacterial Bioplastic for Automotive applications. http// (accessed on 20 August 2010).
[6] Jamshidian, M.; Tehrany, E.A.; Imran M.; Jacquot M.; Desobry S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552-571.
[7] Amass, W.; Amass, A.; Tighe, B.A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89-144.
[8] Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273-1335.
[9] Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macrmol Mater Eng. 2000, 276/277, 1-24.
[10] Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 2008, 19, 634-643.
[11] Pandey, J.K.; Chu, W.S.; Lee, C.S.; Ahn, S.H. Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the International Symposium on Polymers and the Environment: Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS), Vancouver, WA, USA, 17–20 October 2007.
[12] Sinha, S.R.; Bousmina, M. Biodegradable polymer/layered silicate nanocomposites. In Polymer Nanocomposites; Mai, Y., Yu, Z., Eds.; Woodhead Publishing and Maney Publishing: Cambridge, England, pp. 57-129.
[13] John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohyd. Polym. 2008, 71, 343-364.
[14] Carvalho, A.J.F.; Curvelo, A.A.S.; Agnelli, J.A.M.A. First insight on composites of thermoplastic starch and kaolin. Carbohyd. Polym. 2001, 45, 189-194.
[15] Pandey, J.K.; Singh, R.P. Green nanocomposites from renewable resources: Effect of plasticizer on the structure and material properties of clay-filled starch. Starch/St?rke 2005, 57, 8-15.
[16] Guan, J.; Hanna, M.A. Selected morphological and functional properties of extruded acetylated starch-cellulose foams. Bioresource Technol. 2006, 97, 1716-1726.
[17] Kumar, A.P.; Singh, R.P. Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking. Bioresource Technol. 2008, 99, 8803-8809.
[18] Lu, Y.; Weng, L.; Cao, X. Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd. Polym. 2006, 63, 198-204.
[19] Ma, X.F.; Yu, J.G.; Wang, N. Fly ash-reinforced thermoplastic starch composites. Carbohyd. Polym. 2007, 67, 32-39.
[20] Svagan, A. Bio-inspired cellulose Nanocomposites and foams based on starch matrix. PhD thesis, Department of Fiber and Polymer Technology, KTH Chemical Science and Engineering, SE-100 44, Stockholm, Sweden, 2008.
[21] Famá, L.; Gerschenson, L.; Goyanes, S. Starch-vegetable fiber composites to protect food products. Carbohyd. Polym. 2009, 75, 230-235.
[22] Kaushik, A.; Singh, M.; Verma, G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd. Polym. 2010, 82, 337-345.
[23] Liu, D.; Zhong, T.; Chang, P.R.; Li, K.; Wu, Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technol. 2010, 101, 2529-2536.
[24] Guimar?es, J.L.; Wypych, F.; Saul, C.K.; Ramos, L.P.; Satyanarayana, K.G. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohyd. Polym. 2010, 80, 130-138.
[25] Kaith, B.S.; Jindal, R.; Jana, A.K.; Maiti, M. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers—Evaluation of thermal, physico-chemical and mechanical properties. Bioresource Technol. 2010, 101, 6843-6851.
[26] Ogata, N.; Jimenez G.; Kawai H.; Ogihara T. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 389-96.
[27] Sinha, R.S.; Okamoto, K.; Yamada, K.; Okamoto, M. Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Letts. 2002, 2, 423-426.
[28] Sinha, R.S.; Yamada K.; Okamoto, M.; Ueda, K. New polylactide/layered silicate nanocomposite: A novel biodegradable material. Nano Letts. 2002, 2, 1093-1096.
[29] Sinha, R.S.; Maiti P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties. Macromolecule 2002 35, 3104-3110.
[30] Sinha, R.S.; Yamada, K.; Ogami A.; Okamoto, M.; Ueda, K. New polylactide layered silicate nanocomposite: Nanoscale control of multiple properties. Macromol. Rapid Commun. 2002, 23, 493-497.
[31] Sinha, R.S.; Okamoto, M.; Yamada, K.; Ueda, K. New biodegradable polylactide/layered silicate nanocomposites: Preparation, characterization and materials properties. Macromolecules 2002, 35, 659-660.
[32] Sinha, R.S.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites: Concurrent improvement of materials properties and biodegradability. Polymer 2003, 44, 857-866.
[33] Yamada, K.; Ueda, K.; Sinha, R.S.; Okamoto, M. Preparation and properties of polylactide/layered silicate nanocomposites. Kobunshi Robunshu 2002, 59, 760-765.
[34] Maiti, P.; Yamada, K., Okamoto, M, Ueda, K, Okamoto, K New polylactide/ layered silicate Nanocomposites: role of organoclay. Chem. Mater. 2002, 14, 4654-4661.
[35] Paul, M.A.; Alexandre, M.; Degee, P.; Calberg, C.; Jerome, R.; Dubois, P. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol Rapid Commun 2003, 24, 561-566.
[36] Lee, J.H.; Park, T.G.; Park, H.S.; Lee, D.S.; Lee, Y.K.; Yoon, S.C.; Nam, J.D. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials 2002, 24, 2773-2778.
[37] Chang, J.; An, Y.U.; Cho, D.; Giannelis E.P. Poly (lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 2003, 44, 3715–3720.
[38] Bondeson, D.; Oksman, K. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos. Interface. 2007, 14, 617-630.
[39] Lee, S.; Kang, I.; Doh, G.; Yoon, H.; Park, B.; Wu, Q. Thermal and Mechanical Properties of Wood Flour/Talc-filled Polylactic Acid Composites: Effect of Filler Content and Coupling Treatment. J. Thermoplast. Compos. Mater. 2008, 21, 209-223.
[40] Qu, P.; Gao, Y.; Wu, G.; Zhang, L. Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 2010, 5, 1811-1823.
[41] Misra, M.; Park, H.; Mohanty, A.K.; Drzal, L.T. Injection molded ‘Green’ nanocomposite materials from renewable resources. Presented at the Global Plastics Environmental Conference, Detroit, MI, USA, 18–19 February 2004.
[42] Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sensor. Actuator. A Phys. 2011, 165, 194-199
[43] Tun?, S.; Duman, O. Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. Food Sci. Technol. 2011, 44, 465-472.
[44] Zimmermann, K.A.; LeBlanc, J.M.; Sheets, K.T.; Fox, R.W.; Gatenholm, P. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater. Sci. Eng. 2011, 31, 43-49.
[45] Zadegan, S.; Hosainalipour, M.; Rezaie, H.R.; Ghassai, H.; Shokrgozar, M.A. Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater. Sci. Eng. 2011, 31, 954-961.
[46] Sithique, M.A.; Alagar, M. Preparation and Properties of Bio-Based Nanocomposites from Epoxidized Soy Bean Oil and Layered Silicate. Malaysian Polym. J. 2010, 5, 151-161.
[47] Azeredo, H.M.C.; Mattoso, L.H.C.; Wood, D.; Williams, T. G.; Avena-Bustillos, R.J.; Mchugh, T.H. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 2009, 74, 31-35.
[48] Tate, J.S.; Akinola, A.T.; Kabakov, D. Bio-based Nanocomposites: An Alternative to Traditional Composites. J. Technol. Stud. 2010, 1, 25-32.
[49] Ke, T.Y.; Sun, X.Z. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J. Appl. Polym. Sci. 2001, 81, 3069-82.
[50] Uesaka, T; Nakane, K; Maeda, S; Ogihara, T.; Ogata, N. Structure and physical properties of poly(butylene succinate)/cellulose acetate blends. Polymer 2000, 41, 8449-54.
[51] Kesel, C.D.; Wauven, C.V.; David, C. Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by micro-organisms from a compost of house-hold refuse. Polym. Degrad. Stab. 1997, 55, 107-113.
[52] Averous, L.; Fauconnier, N.; Moro, L. Fringant Blends of thermoplastic starch and polyesteramide: Processing and properties. J. Appl. Polym. Sci. 2000, 76, 1117-1128.
[53] Willett, J.L.; Shogren, R.L. Processing and properties of extruded starch/polymer foams. Polymer 2002, 43, 5935-5947.
[54] Martin, O.; Averous, L. Poly (lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209-6219.
[55] Sarazin, P.; Li, G.; Orts, W.J.; Favis, B.D. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599-609.
[56] Majdzadeh-Ardakani, K.; Sadeghi-Ardakani, Sh. Experimental investigation of mechanical properties of Starch/natural rubber/clay nanocomposites. Digest J. Nanomater. Biostruct. 2010, 5, 307-316.
[57] Maiti, P.; Batt, C.A.; Giannelis, E.P. Renewable plastics: Synthesis and properties of PHB nanocomposites. Polym. Mater. Sci. Eng. 2003, 88, 58-59.
[58] Zheng, J.P.; Li, P.; Ma, Y.L.; Yao, K.D. Gelatine/montmorillonite hybrid nanocomposite. I. Preparation and properties. J. Appl. Polym. Sci. 2002, 86, 1189-1194.
[59] Takegawa, A.; Murakami, M.; Kaneko, Y.; Kadokawa, J. Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohyd. Polym. 2010, 79, 85-90.
[60] Nunes, M.R.S.; Silva, R.C.; Silva, J.G., Jr.; Tonholo, J.; Ribeiro, A.S. Preparation and morphological characterization of chitosan/clay nanocomposites. In Proceedings of the 11th International Conference on Advanced Materials, Rio de jenero, Brazil, 20–25 September 2009; pp. 20-25.
[61] Pothan, L.A.; Thomas, S. Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Compos. Sci. Technol. 2003, 63, 1231-1240.
[62] Zemljic, L.F.; Stenius, P.; Stana-kleinschek, J.; Ribitsch, V. Characterization of cotton fibers modified by carboxymethyl cellulose. Lenzinger Berichte 2006, 85, 68-76.
[63] Reddy, N.; Yang, Y.; Properties and potential application of natural cellulose fibers from the bark of cotton stalks. Bioresource Technol. 2009, 100, 3563-3569.
[64] Wambua, P.; Ivens, J.; Verpoest, I. Natural fibers: Can they replace glass in fiber reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259-1264.
[65] Reddy, N.; Yang, Y. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technol. 2008, 99, 2449-2454.
[66] Reddy, N.; Yang, Y. Natural Cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Biotechnol. Bioeng. 2007, 97, 1021-1027.
[67] Bodros, E.; Baley, C. Study of the tensile properties of stinging nettle fibers (Urtica dioica) Mater. Lett. 2008, 62, 2143-2145.
[68] Batra, S.K. Other long vegetable fibers. In Handbook of Fiber Science and Technology; Lewi, N.M., Pearce, E.M. Eds.; Marcel Dekker Fiber Chemistry: New York, NY, USA, 1998; Volume 4, p. 727.
[69] Goda, K.; Sreekala, M.S.; Gomes, A.; Kaji, T.; Ohgi, J. Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2213-2220.
[70] Reddy, N.; Yang, Y. Natural cellulose fibers from soybean straw. Bioresource Biotechnol. 2009, 100, 3593-3598.
[71] Baley, C. Analysis of the flax fiber tensile behavior and analysis of the tensile stiffness increase. Compos. Part A Appl. Sci. Manuf. 2002, 33, 939-948.
[72] Sain, M.; Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crops Products 2006, 23, 1-8.
[73] Panthapulakka, S.; Zereshkian, A.; Sain, M. Preparation and characterization of wheat straw for reinforcing application in injection molded thermoplastic composites. Bioresource Biotechnol. 2006, 97, 265-272.
[74] Reddy, N.; Yang, Y. Properties of natural cellulose fibers from hop stems. Carbohyd. Polym. 2009, 77, 898-902.
[75] Reddy, N.; Yang, Y. Structure and properties of high quality natural cellulose fibers from corn stalks. Polymer 2005, 46, 5494-5500.
[76] Vignon, M.R.; Dupeyre, D.; Garcia-Jaldon, C. Morphological characterization of steam exploded hemp fibers and their utilization in propylene-based composites. Bioresource Biotechnol. 1996, 58, 203-215.
[77] Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43-52.
[78] Bodros, E.; Pillin, I.; Montrelay, N.; Baley, C. Could biopolymers reinforced by randomly scattered flax fiber be used in structural applications? Compos. Sci. Technol. 2007, 67, 462-470.
[79] Singha, A.S.; Thakur, V.K. Mechanical properties of natural fiber reinforced polymer composites. Bull. Mater. Sci. 2008, 31, 791-799.
[80] Ochi, S. Mechanical properties of Kenaf fibers and Kenaf/PLA composites. Mech. Mater. 2008, 40, 446-452.
[81] Reddy, N. Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym. Eng. Sci. 2009, 49, 2212-2217. Available online: mi_hb3367/is_11_49/ai_n4510020/ (accessed on 17 August 2010).
[82] Ave′rous, L.; Digabel, F.L. Properties of biocomposites based on lignocellulosic fillers. Carbohyd. Polym. 2006, 66, 480-493.
[83] Averous, L.; Bouquillon, N. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohyd. Polym. 2004, 56, 111-122.
[84] Lei, Y.; Wu, Q.; Yao, F.; Xu, Y. Preparation and properties of recycled HDPE/natural fiber composites. Compos. Part A 2007, 38, 1664–1674.
[85] Zabihzadeh, S.M. Water uptake and flexural properties of natural Filler/HDPE composites. BioResources 2010, 5, 316-323.
[86] Teixeira, E.; Pasquini, D.; Antonio, A.S.; Corradini, C.E.; Belgacem, M.N.; Dufresne, A. Cassava baggasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate polymers 2009, 78, 422-431.
[87] Huskic, M.; Igon, M.Z. PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. European Polymer Journal 2007, 43, 4891–4897.
[88] Zou, H.; Wu, S.S.; Shen, J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893-3957.
[89] Wei, L.; Hu, N.; Zhang, Y. Synthesis of polymer—Mesoporous silica nanocomposites. Materials 2010, 3, 4066-4079.
[90] Ashori, A. Wood-plastic composites as promising green-composites for automotive industries! Bioresource Biotechnol. 2008, 99, 4661-4667.
[91] Kim, J.P.; Yoon T.-H.; Mun S.P.; Rhee J.M.; Lee J.S. Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Biotechnol. 2006, 97, 494-499.
[92] Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 2001, 61, 1437-1447.
[93] Qin, C.; Soykeabkaew N.; Xiuyuan N.; Peijs, T. The effect of fiber volume fraction and mercerization on the properties of all cellulose composites. Carbohyd. Polym. 2008, 71, 458-467.
[94] George, E.R.; Sullivan, T.M.; Park, E.H. Preparation of high moisture content thermoplastic polyester starch. Polym. Eng. Sci. 1994, 34, 17-24.
[95] Harada, M.; Ohya, T.; Iida, K.; Hayashi, H.; Hirano, K.; Fukuda, H. Increased impact strength of biodegradable poly (lactic acid)/poly (butylenes succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813-1820.
[96] Demetrakakes, P. Nanocomposites raise barriers, but also face them: Clay based additives increase the barrier qualities of plastics, but obstacles to commercialization must be overcome. Food & Drug Packaging, (Available from: m0UQX/is 12 66/ai 96123509 (accessed on 19 October 2010).

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.