Mathematical Analysis of an Optimal Control Problem of Surface Water Pollution

Download Download as PDF (Size:471KB)  HTML   XML  PP. 164-179  
DOI: 10.4236/am.2017.82014    467 Downloads   750 Views  

ABSTRACT

We present in this paper a new technique based on Gelfand’s triplet [1] and include differential theory to make a theoretical analysis of an optimal control problem with constraints governed by coupled partial differential equations. This technique allowed us to give some theoretical results of existence and uniqueness of the solution of constraints and characterize the optimal control.

Cite this paper

Moustapha, D. , Haoua, H. and Bisso, S. (2017) Mathematical Analysis of an Optimal Control Problem of Surface Water Pollution. Applied Mathematics, 8, 164-179. doi: 10.4236/am.2017.82014.

References

[1] Gelfand, I.M. and Ya, N. (1964) Vilenkin; Generalized Functions. Applications of Harmonic Analysis. Vol. 4, Academic Press, New York.
[2] Pyatnitsky, E.S. and Rapoport, L.B. (1996) Criteria of Asymptotic Stability of Differential Inclusions and Periodic Motions of Time-Varying Nonlinear Control Systems. IEEE Transactions on Circuits and Systems, 43, 219-229. https://doi.org/10.1109/81.486446
[3] Ciarlet, P.G. (1982) Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, Paris.
[4] Culioli, J.C. (1994) Introduction à l’optimisation. Editions Ellipses, Paris.
[5] Faurre, P. (1988) Analyse numérique. Notes d’optimisation, Ecole Polytechnique. Ellipse, Edition Marketing, Paris.
[6] Cannone, M. (2000) Nombres de Reynolds, stabilité et Navier-Stokes. Vol. 52, Banach Center Publications, Warszawa.
[7] Brezis, H. (1968) Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l’Institut Fourier (Grenoble), 18, 115-175.
[8] Bonnans, J.F. (1998) Second Order Analysis for Control Constrained Optimal Control Problems of Semilinear Elliptic Systems. Applied Mathematics & Optimization, 38, 303-325.
https://doi.org/10.1007/s002459900093
[9] Aubin, J.P. (1963) Un théorème de compacité. Comptes Rendus de l’Académie des Sciences, Paris, 256.
[10] Clérin, J.-M. (2009) Problèmes de controle optimal du type bilinéaire gouvernés par des équations aux dérivées partielles d’évolution. Thèse, LANLG, Université d’Avignon.
[11] Lions, J.L. (1968) Controle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris.
[12] Lions, J.-L. (1969) Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars, Paris.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.