The Generalized r-Whitney Numbers

Download Download as PDF (Size:426KB)  HTML   XML  PP. 117-132  
DOI: 10.4236/am.2017.81010    477 Downloads   613 Views  

ABSTRACT

In this paper, we define the generalized r-Whitney numbers of the first and second kind. Moreover, we drive the generalized Whitney numbers of the first and second kind. The recurrence relations and the generating functions of these numbers are derived. The relations between these numbers and generalized Stirling numbers of the first and second kind are deduced. Furthermore, some special cases are given. Finally, matrix representation of the relations between Whitney and Stirling numbers is given.

Cite this paper

El-Desouky, B. , Shiha, F. and Shokr, E. (2017) The Generalized r-Whitney Numbers. Applied Mathematics, 8, 117-132. doi: 10.4236/am.2017.81010.

References

[1] Mezo, I. (2010) A New Formula for the Bernoulli Polynomials. Results in Mathematics, 58, 329-335.
https://doi.org/10.1007/s00025-010-0039-z
[2] Mezo, I. and Ramírez, J.L. (2016) Some Identities of the r-Whitney numbers. Aequationes Mathematicae, 90, 393-406.
https://doi.org/10.1007/s00010-015-0404-9
[3] Cheon, G.-S. and Jung, J.-H. (2012) r-Whitney Numbers of Dowling Lattices. Discrete Math., 312, 2337-2348.
https://doi.org/10.1016/j.disc.2012.04.001
[4] Dowling, T.A. (1973) A Class of Geometric Lattices Passed on Finite Groups. Journal of Combinatorial Theory, Series B, 14, 61-86.
[5] Benoumhani, M. (1996) On Whitney Numbers of Dowlling Lattices. Discrete Mathematics, 159, 13-33.
https://doi.org/10.1016/0012-365X(95)00095-E
[6] El-Desouky, B.S. and Cakic, N.P. (2011) Generalized Higher Order Stirling Numbers. Mathematical and Computer Modelling, 54, 2848-2857.
https://doi.org/10.1016/j.mcm.2011.07.005
[7] Comtet, L. (1972) Numbers de Stirling generaux et fonctions symetriques. Comptes Rendus de l’Académie des Siences Paris, 275(Ser. A), 747-750.
[8] Charalambides, Ch.A. (1996) On the q-Differences of the Generalized q-Factorials. Journal of Statistical Planning and Inference, 54:31-34.
https://doi.org/10.1016/0378-3758(95)00154-9
[9] Mangontarum, M.M., Cauntongan, O.I. and Macodi-Ringia, A.P. (2016) The Noncentral Version of the Whitney Numbers. International Journal of Mathematics and Mathematical Science, Article ID: 6206207, 16 pages.
[10] Belbachir, H. and Bousbaa, I.E. (2013) Translated Whitney and r-Whitney Numbers: A Combinatorial Approach. Journal of Integer Sequences, 16, Article 13.8.6.
[11] Sun, Y. (2006) Two Classes of p-Stirling Numbers. Discrete Mathematics, 306, 2801-2805.
https://doi.org/10.1016/j.disc.2006.05.016
[12] El-Desouky, B.S. and Gomaa, R.S. (2011) Q-Comtet and Generalized q-Harmonic Numbers. Journal of Mathematical Sciences: Advances and Applications, 211, 52-71.
[13] Call, G.S. and Vellman, D.J. (1993) Pascal Matrices. American Mathematical Monthly, 100, 372-376.
https://doi.org/10.2307/2324960
[14] Stanimirovic, S. (2011) A Generalization of the Pascal Matrix and Its Properties. Series Mathematics and Informatic, 26, 17-27.
[15] Gould, H.W. (2010) Combinatorial Numbers and Associated Identities. Unpublished Manuscript.
http://www.math.wvu.edu/~gould/
[16] Comtet, L. (1974) Advanced Combinatorics: The Art of Finite and Infinite Expansions. D Reidel Publishing Company, Dordrecht.
https://doi.org/10.1007/978-94-010-2196-8
[17] El-Desouky, B.S. (1994) The Multiparameter Noncentral Stirling Numbers. Fibonacci Quarterly, 32, 218-225.
[18] Cakic, N.P. (1995) The Complete Bell Polynomials and Numbers of Mitrinovic. University of Belgrade, Publikacije Elektrotehni_ckog fakulteta, Serija Matematika, 6, 74-78.
[19] Cakic, N.P., El-Desouky, B.S. and Milovanovic, G.V. (2013) Explicit Formulas and Combinatorial Identities for Generalized Stirling Numbers. Mediterranean Journal of Mathematics, 10, 375-385.
https://doi.org/10.1007/s00009-011-0169-x

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.