Overview of Hypersphere World-Universe Model

Full-Text HTML XML Download Download as PDF (Size:717KB) PP. 593-632
DOI: 10.4236/jhepgc.2016.24052    1,258 Downloads   2,898 Views  


This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density; the gravitational parameter and Hubble’s parameter; temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation; gamma-ray background and cosmic neutrino background; macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.

Cite this paper

Netchitailo, V. (2016) Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 2, 593-632. doi: 10.4236/jhepgc.2016.24052.


[1] Netchitailo, V.S. (2015) 5D World-Universe Model. Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25.
[2] Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55.
[3] Netchitailo, V.S. (2016) 5D World-Universe Model. Neutrinos. The World. Journal of High Energy Physics, Gravitation and Cosmology, 2, 1.
[4] Netchitailo, V.S. (2016) 5D World-Universe Model. Gravitation. Journal of High Energy Physics, Gravitation and Cosmology, 2, 328.
[5] Morrow, A. (2016) Hubble Spots a Secluded Starburst Galaxy.
[6] Swinbank, M. (2009) Rapid Star Formation Spotted in “Stellar Nurseries” of Infant Galaxies. Monthly Notices of the Royal Astronomical Society, November.
[7] Arrenberg, S., et al. (2013) Complementarity of Dark Matter Experiments.
[8] Heeck, J. and Zhang, H. (2013) Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos. arXiv: 1211.0538 v2.
[9] Aoki, M., et al. (2012) Multi-Component Dark Matter Systems and Their Observation Prospects. arXiv: 1207.3318 v2.
[10] Kusenko, A., Loewenstein, M. and Yanagida, T. (2013) Moduli Dark Matter and the Search for Its Decay Line Using Suzaku X-Ray Telescope. Physical Review D, 87, 043508.
[11] Feldman, D., Liu, Z., Nath, P. and Peim, G. (2010) Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions. arXiv: 1004.0649 v2.
[12] Feng, J.L. (2010) Dark Matter Candidates from Particle Physics and Methods of Detection. arXiv: 1003.0904 v2.
[13] Zurek, K.M. (2009) Multi-Component Dark Matter. arXiv: 0811.4429 v3.
[14] Spolyar, D., Freese, K. and Gondolo, P. (2007) Dark Matter and the First Stars: A New Phase of Stellar Evolution. arXiv:0705.0521v2.
[15] Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547.
[16] Bennett, C.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. arXiv: astro-ph/1212.5225v3.
[17] Grieb, J.N., et al. (2016) The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological Implications of the Fourier Space Wedges of the Final Sample. arXiv:1607.03143.
[18] Riess, A.G., et al. (2016) A 2.4% Determination of the Local Value of the Hubble Constant. arXiv: 1604.01424.
[19] Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. arXiv: astroph 0911.1955v2.
[20] Fixsen, D.J., et al. (1996) The Cosmic Microwave Background Spectrum from the Full COBE* FIRAS Data Set. Astrophysical Journal, 473, 576.
[21] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (1999) Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS. arXiv: 9905128.
[22] Draine, B.T. and Lazarian, A. (1998) Electric Dipole Radiation from Spinning Dust Grains. Astrophysical Journal, 508, 157.
[23] Finkbeiner, D.P. and Schlegel, D.J. (1999) Interstellar Dust Emission as a CMBR Foreground. arXiv: 9907307.
[24] Lagache, G., et al. (1999) First Detection of the Warm Ionized Medium Dust Emission. Implication for the Cosmic Far-Infrared Background. arXiv: 9901059.
[25] Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (2000) Detection of a Far IR Excess with DIRBE at 60 and 100 Microns. arXiv: 0004175.
[26] Siegel, P.H. (2002) Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910.
[27] Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy [Heterodyne Spectroscopy]. Proceedings of IEEE, 80, 1662.
[28] Dupac, X., et al. (2003) The Complete Submillimeter Spectrum of NGC 891. arXiv: 0305230.
[29] Aguirre, J.E., et al. (2003) The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data. arXiv: 0306425.
[30] Pope, A., et al. (2006) Using Spitzer to Probe the Nature of Submillimetre Galaxies in GOODS-N. arXiv: 0603409.
[31] Marshall, J.A., et al. (2007) Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting. arXiv: 0707.2962.
[32] Spitzer, L. (1941) The Dynamics of the Interstellar Medium; II. Radiation Pressure. The Astrophysical Journal, 94, 232.
[33] Ignatov, A.M. (1996) Lesage Gravity in Dusty Plasma. Plasma Physics Reports, 22, 58.
[34] Radzievskii, V.V. and Kagalnikova, I.I. (1960) The Nature of Gravitation. Vsesoyuz. Astronom.-Geodezich. Obsch. Byull., 26, 3.
[35] Shneiderov, A.J. (1961) On the Internal Temperature of the Earth. Bollettino di GeofisicaTeoricaed Applicata, 3, 137.
[36] Buonomano, V. and Engel, E. (1976) Some Speculations on a Causal Unification of Relativity, Gravitation, and Quantum Mechanics. International Journal of Theoretical Physics, 15, 231.
[37] Adamut, I.A. (1982) The Screen Effect of the Earth in the TETG. Theory of a Screening Experiment of a Sample Body at the Equator Using the Earth as a Screen. Nuovo Cimento, C5, 189.
[38] Jaakkola, T. (1996) Action at a Distance and Local Action in Gravitation: Discussion and Possible Solution of the Dilemma. Apeiron, 3, 61.
[39] Van Flandern, T. (1999) Dark Matter, Missing Planets and New Comets. 2nd Edition, North Atlantic Books, Berkeley, Chapters 2-4.
[40] Edwards, M.R. (2002) Pushing Gravity: New Perspectives on Le Sage’s Theory of Gravitation. C. Roy Keys Inc., Montreal.
[41] Edwards, M.R. (2007) Photon-Graviton Recycling as Cause of Gravitation. Apeiron, 14, 214.
[42] Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275.
[43] Lev, F.M. (2010) Is Gravity an Interaction? Physics Essays, 23, 355.
[44] Wolfenstein, L. (1994) Superweak Interactions. Comments on Nuclear and Particle Physics, 21, 275.
[45] Yamaguchi, Y. (1959) Possibility of Super-Weak Interactions and the Stability of Matter. Progress of Theoretical Physics, 22, 373.
[46] Kelley, K.F. (1999) Measurement of the CP Violation Parameter sin2β. PhD Thesis, MIT.
[47] Bian, B.A., et al. (2006) Determination of the NN Cross Section, Symmetry Energy, and Studying of Weak Interaction in CSR.
[48] Swain, J. (2010) Gravitatomagnetic Analogs of Electric Transformers. arXiv: ge-qc/1006. 5754v1.
[49] McCullagh, J. (1846) An Essay towards a Dynamical Theory of Crystalline Reflexion and Refraction. Transactions of the Royal Irish Academy, 21, 17.
[50] Riemann, B. (1854) On the Hypotheses Which Lie at the Bases of Geometry. Translated by William Kingdon Clifford. Nature, 183-184, 14-17, 36, 37.
[51] Clifford, W.K. (1870) On the Space-Theory of Matter. Proceedings of the Cambridge Philosophical Society, 2, 157.
[52] Heaviside, O. (1893) A Gravitational and Electromagnetic Analogy. The Electrician, 31, 81.
[53] Dirac, P.A.M. (1937) The Cosmological Constants. Nature, 139, 323.
[54] Hoyle, F. and Narlikar, J.V. (1964) A New Theory of Gravitation. Proceedings of the Royal Society of London A, 282, 178.
[55] Dirac, P.A.M. (1974) Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society of London A, 338, 439.
[56] Sakharov, A.D. (1968) Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Soviet Physics—Doklady, 12, 1040.
[57] Visser, M. (2002) Sakharov’s Induced Gravity: A Modern Perspective. arXiv: gr-qc/0204062.
[58] Barcelo, C., Liberati, S. and Visser, M. (2011) Analogue Gravity. Living Reviews in Relativity, 14, 3.
[59] Gough, D.O. (1981) Solar Interior Structure and Luminosity Variations. Solar Physics, 74, 21.
[60] Sandage, A. (1988) Observational Tests of World Models. Annual Review of Astronomy and Astrophysics, 26, 561.
[61] Goobar, A. and Perlmutter, S. (1995) Feasibility of Measuring the Cosmological Constant Lambda and Mass Density Omega Using Type Ia Supernovae. arXiv:astro-ph/9505022.
[62] Lorimer, D.R., et al. (2007) A Bright Millisecond Radio Burst of Extragalactic Origin. arXiv: 0709.4301.
[63] Single-Dish Radio Astronomy: Techniques and Applications (2002) ASP Conference Proceedings, 278. In: Stanimirovic, S., Altschuler, D., Goldsmith, P. and Salter, C., Eds., Astronomical Society of the Pacific, San Francisco, 251-269.
[64] Lorimer, D.R. and Kramer, M. (2005) Handbook of Pulsar Astronomy, Vol. 4 of Cambridge Observing Handbooks for Research Astronomers, Cambridge University Press, Cambridge.
[65] Nambu, Y. (1952) An Empirical Mass Spectrum of Elementary Particles. Progress of Theoretical Physics, 7, 131.
[66] MacGregor, M.H. (2007) The Power of Alpha. World Scientific, Singapore.
[67] Mirizzi, A., Raffelt, G.G. and Serpico, P.D. (2006) Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences. arXiv: astro-ph/0607415v1.
[68] Spergel, D.N., et al. (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. arXiv: astro-ph/0302209v3.
[69] Matthew, F. (2013) First Planck Results: The Universe Is Still Weird and Interesting.
[70] Csaki, C., Kaloper, N. and Terning, J. (2001) Effects of the Intergalactic Plasma on Supernova Dimming via Photon-Axion Oscillations. arXiv: hep-ph/0112212v1.
[71] Williams, E., Faller, J. and Hill, H. (1971) New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass. Physical Review Letters, 26, 721.
[72] Amsler, C., et al. (Particle Data Group) (2008) Review of Particle Physics. Physics Letters B, 667, 1.
[73] Pontecorvo, B. and Smorodinsky, Y. (1962) The Neutrino and the Density of Matter in the Universe. Soviet Physics—JETP, 14, 173.
[74] Sanchez, M. (2003) Oscillation Analysis of Atmospheric Neutrinos in Soudan 2. PhD Thesis, Tufts University.
[75] Kaus, P. and Meshkov, S. (2003) Neutrino Mass Matrix and Hierarchy. AIP Conference Proceedings, 672, 117.
[76] Hauser, M.G., et al. (1984) IRAS Observations of the Diffuse Infrared Background. Astrophysical Journal, 278, L15.
[77] Low, F.J., et al. (1984) Infrared Cirrus-New Components of the Extended Infrared Emission. Astrophysical Journal, 278, L19.
[78] Wang, B. (1991) Integrated Far-Infrared Background from Galaxies. Astrophysical Journal, 374, 465.
[79] Wright, E.L. (2001) Cosmic Infrared Background Radiation.
[80] Devlin, M.J., et al. (2009) Over Half of the Far-Infrared Background Light Comes from Galaxies at z >= 1.2. arXiv: 0904.1201.
[81] Chapin, E.L., et al. (2010) A Joint Analysis of BLAST 250 - 500 um and LABOCA 870 um Observations in the Extended Chandra Deep Field South. arXiv: 1003.2647.
[82] Mackenzie, T., et al. (2010) A Pilot Study for the SCUBA-2 “All-Sky” Survey. arXiv: 1012.1655.
[83] Serra, P., et al. (2014) Cross-Correlation of Cosmic Infrared Background Anisotropies with Large Scale Structures. arXiv: 1404.1933.
[84] Sanders, D.B., et al. (1988) Ultraluminous Infrared Galaxies and the Origin of Quasars. The Astrophysical Journal, 325, 74.
[85] NASA Mission Pages (2013) Planck Mission Brings Universe Into Sharp Focus.
[86] Feng, W.Z., Mazumdar, A. and Nath, P. (2013) Baryogenesis from Dark Matter. arXiv: 1302.0012v2.
[87] Feng, W.Z., Nath, P. and Peim, G. (2012) Cosmic Coincidence and Asymmetric Dark Matter in a Stueckelberg Extension. arXiv: 1204.5752v2.
[88] Corda, C., Cuesta, H.J.M. and Gomez, R.L. (2012) High-Energy Scalarons in R2 Gravity as a Model for Dark Matter in Galaxies. Astroparticle Physics, 35, 362.
[89] Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275.
[90] Ho, J., Kim, S. and Lee, B.H. (1999) Maximum Mass of Boson Stars Formed by Self-Interacting Scalar Fields. arXiv: gr-qc/9902040 v2.
[91] Cohen, H. (1998) Table of Temperatures, Power Densities, Luminosities by Radius in the Sun. Contemporary Physics Education Project.
[92] O’Donoghue, J., Moore, L., Stallard, T.S. and Melin, H. (2016) Heating of Jupiter’s Upper Atmosphere above the Great Red Spot. Nature, 536, 190-192.
[93] Hammel, B. (2011) Interpreting the Planck Mass.
[94] Strigari, L.E. (2012) Galactic Searches for Dark Matter. arXiv: 1211.7090 v1.
[95] Bechtol, K. (2011) The Extragalactic Gamma-Ray Background. A Census of High Energy Phenomena in the Universe.
[96] Buckley, J.H., et al. (2008) The Status and Future of Ground-Based TeV Gamma-Ray Astronomy. A White Paper Prepared for the Division of Astrophysics of the American Physical Society. arXiv: 0810.0444 v1.
[97] Jeltema, T. (2012) Observational Cosmology and Astroparticle Physics.
[98] Aharonian, F.A. (2004) Very High Energy Cosmic Gamma Radiation. A Crucial Window on the Extreme Universe.
[99] Totani, T. (2009) The Cosmic Gamma-Ray Background Radiation. AGNs, and More?
[100] Johnson, R.P. and Mukherjee, R. (2009) GeV Telescopes: Results and Prospects for Fermi. New Journal of Physics, 11, 055008.
[101] Giovannelli, F. and Sabau-Graziati, L. (2012) Multifrequency Behavior of High Energy Cosmic Sources. A Review. Memoriedella Societa Astronomica Italiana, 83, 17.
[102] Essig, R., et al. (2013) Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations. arXiv: 1309.4091v3.
[103] Porter, T.A., Johnson, R.P. and Graham, P.W. (2011) Dark Matter Searches with Astroparticle Data. arXiv: 1104.2836v1.
[104] Holder, J. (2012) TeV Gamma-Ray Astronomy: A Summary. arXiv: 1204.1267v1.
[105] Chaves, R.C.G., et al. (2009) Extending the H.E.S.S. Galactic Plane Survey. arXiv: 0907. 0768v1.
[106] Tibolla, O., et al. (2009) New Unidentified H.E.S.S. Galactic Sources. arXiv: 0907.0574v1.
[107] Hoppe, S., et al. (2009) Detection of Very-High-Energy Gamma-Ray Emission from the Vicinity of PSR B1706-44 with H.E.S.S. arXiv: 0906.5574v2.
[108] Tam, P.H.T., et al. (2009) A Search for VHE Counterparts of Galactic Fermi Bright Sources and MeV to TeV Spectral Characterization. arXiv: 0911.4333v2.
[109] Tibolla, O., et al. (2009) New Unidentified Galactic H.E.S.S. Sources. arXiv: 0912.3811v1.
[110] Tam, P.H.T., et al. (2010) A Search for VHE Counterparts of Galactic Fermi Sources. arXiv: 1001.2950v1.
[111] Aleksic, J., et al. (2013) Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC. arXiv: 1312.1535v3.
[112] Moralejo, A. (2013) Segue-I Observations with MAGIC.
[113] Abramowski, A., et al. (2013) Search for Photon Line-Like Signatures from Dark Matter Annihilations with H.E.S.S. arXiv: 1301.1173v1.
[114] Jin, H.B., Wu, Y.L. and Zhou, Yu.F. (2013) Implications of the First AMS-02 Measurement for Dark Matter Annihilation and Decay. arXiv: 1304.1997v3.
[115] Abdo, A.A., et al. (2009) Measurement of the Cosmic Ray e+ plus e- Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. arXiv: 0905.0025v1.
[116] Adriani, O., et al. (2011) The Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV. arXiv: 1103.2880v1.
[117] He, X.G. (2009) A Brief Review on Dark Matter Annihilation Explanation for e± Excesses in Cosmic Ray. arXiv: 0908.2908v2.
[118] Cholis, I. and Goodenough, L. (2010) Consequences of a Dark Disk for the Fermi and PAMELA Signals in Theories with a Sommerfeld Enhancement. arXiv: 1006.2089v2.
[119] Morselli, A. (2011) Indirect Detection of Dark Matter, Current Status and Recent Results. Progress in Particle and Nuclear Physics, 66, 208.
[120] Abazajian, K.N. and Harding, J.P. (2011) Constraints on WIMP and Sommerfeld-Enhanced Dark Matter Annihilation from HESS Observations of the Galactic Center. arXiv: 1110. 6151v3.
[121] Kawanaka, N., et al. (2010) TeV Electron Spectrum for Probing Cosmic-Ray Escape from a Supernova Remnant. arXiv: 1009.1142v3.
[122] Aharonian, F.A., et al. (2008) Energy Spectrum of Cosmic-Ray Electrons at TeV Energies. Physical Review Letters, 101, 261104.
[123] Granger, D. (2010) Diffuse Gamma Rays.
[124] Hooper, D. (2012) The Empirical Case for 10 GeV Dark Matter. arXiv: 1201.1303v1.
[125] Hooper, D. and Goodenough, L. (2010) Dark Matter Annihilation in the Galactic Center as Seen by the Fermi Gamma Ray Space Telescope. arXiv: 1010.2752v3.
[126] Sreekumar, P., et al. (1997) EGRET Observations of the Extragalactic Gamma Ray Emission. arXiv: 9709257v1.
[127] Abdo, A.A., et al. (1997) A Population of Gamma-Ray Emitting Globular Clusters Seen with the Fermi Large Area Telescope. arXiv: 1003.3588v2.
[128] Tam, P.H.T., et al. (1997) Gamma-Ray Emission from Globular Clusters. arXiv: 1207. 7267v1.
[129] Boehm, C., et al. (2003) MeV Dark Matter: Has It Been Detected? arXiv: 0309686v3
[130] Boehm, C., Fayet, P. and Silk, J. (2003) Light and Heavy Dark Matter Particles. arXiv: 0311143v1.
[131] Hunter, S.D., et al. (1997) EGRET Observations of the Diffuse Gamma-Ray Emission from the Galactic Plane. The Astrophysical Journal, 481, 205.
[132] Golubkov, Yu.A. and Khlopov, M.Yu. (2000) Antiprotons Annihilation in the Galaxy as a Source of Diffuse Gamma Background. arXiv: 0005419v1.
[133] Wolfe, B., et al. (2008) Neutrinos and Gamma Rays from Galaxy Clusters. arXiv: 0807. 0794v1.
[134] Yamazaki, R., et al. (2006) TeV Gamma-Rays from Old Supernova Remnants. arXiv: 0601704v2.
[135] Agakishiev, G., et al. (2013) Searching a Dark Photon with HADES. arXiv: 1311.0216v1.
[136] Merkel, H., et al., A1 Collaboration (2011) Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron. Physical Review Letters, 106, 251802.
[137] Abrahamyan, S., et al., APEX Collaboration (2011) Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment. Physical Review Letters, 107, 191804.
[138] Meijer, R., et al., SINDRUM I Collaboration (1992) Measurement of the π0 Electromagnetic Transition form Factor. Physical Review D, 45, 1439.
[139] Adlarson, P., et al., WASA-at-COSY Collaboration (2013) Search for a Dark Photon in the π0→e+e-γ Decay. Physics Letters B, 726, 187.
[140] Babuski, D., et al., KLOE-2 Collaboration (2013) Limit on the Production of a Light Vector Gauge Boson in q Meson Decays with the KLOE Detector. Physics Letters B, 720, 111.
[141] Rasera, Y., et al. (2006) Soft Gamma-Ray Background and Light Dark Matter Annihilation. arXiv: 0507707.
[142] Zdziarski, A.A. (1996) Contributions of AGNs and SNe Ia to the Cosmic X-Ray and Gamma-Ray Backgrounds. Monthly Notices of the Royal Astronomical Society, 281, L9.
[143] Gruber, D.E., Matteson, J.L. and Peterson, L.E. (1999) The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO-1. arXiv: 9903492 v1.
[144] Gorenstein, P., Giacconi, R. and Gursky, H. (1967) The Spectra of Several X-Ray Sources in Cygnus and Scorpio. The Astrophysical Journal, 150, L85.
[145] Safi-Harb, S. and Ogelman, H. (1997) ROSAT and ASCA Observations of W50 Associated with the Peculiar Source SS 433. The Astrophysical Journal, 483, 868.
[146] Itoh, T. (2007) Suzaku Studies of Time Variable X-Ray Spectra of Edge-On Active Galactic Nuclei, PhD Thesis.
[147] Bykov, A.M., et al. (2009) Isolated X-Ray-Infrared Sources in the Region of Interaction of the Supernova Remnant IC 443 with a Molecular Cloud. arXiv: 0801.1255v1.
[148] Fukuoka, R., et al. (2008) Suzaku Observation Adjacent to the South End of the Radio Arc. arXiv: 0903.1906v1.
[149] Morretti, A., et al. (2012) Spectrum of the Unresolved Cosmic X Ray Background: What Is Unresolved 50 Years after Its Discovery. arXiv: 1210.6377v1.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.