Achievement of Laser Fusion with High Energy Efficiency Using a Mixture of D and T Ions

Download Download as PDF (Size:904KB)  HTML   XML  PP. 48-58  
DOI: 10.4236/ojee.2016.52005    825 Downloads   971 Views  
Author(s)    Leave a comment

ABSTRACT

A mixture of deuterium (D) and tritium (T) is the most likely fuel for laser-driven inertial confinement fusion (ICF) reactors and hence DD and DT are the fusion reactions that will fire these reactors in the future. Neutrons produced from the two reactions will escape from the burning plasma, in the reactor core, and they are the only products possible to be measured directly. DT/DD neutron ratio is crucial for evaluation of T/D fuel ratio, burn control, tritium cycle and alpha particle self-heating power. To measure this ratio experimentally, the neutron spectra of DD and DT reactions have to be measured separately and simultaneously under high neutron counting with sufficient statistics (typically within 10% error) in a very short time and these issues are mutually contradicted. That is why it is not plausible to measure this high priority ratio for reactor performance accurately. Precise calculations of the DT/DD neutron ratio are needed. Here, we introduce such calculations using a three dimensional (3-D) Monte Carlo code at energies up to 40 MeV (the predicted maximum ion acceleration energy with the available laser systems). In addition, the fusion power ratio of DD and DT reactions is calculated for the same energy range. The study indicates that for a mixture of 50% deuterium and 50% triton, with taking into account the reactions D(d,n)3He and T(d,n)4He, the optimum energy value for achieving the most efficient laser-driven ICF is 0.08 MeV.

Cite this paper

Youssef, A. and Haparir, M. (2016) Achievement of Laser Fusion with High Energy Efficiency Using a Mixture of D and T Ions. Open Journal of Energy Efficiency, 5, 48-58. doi: 10.4236/ojee.2016.52005.

References

[1] Tabak, M., Hammer, J., Glinsky, E.M., Kruer, L.W., Wilks, C.S., Woodworth, J., Campbell, E.M. and Perry, D.M. (1994) Ignition and High Gain with Ultrapowerful Lasers. Physics of Plasmas, 1, 1626.
http://dx.doi.org/10.1063/1.870664
[2] Munro, D.H. (2016) Interpreting Inertial Fusion Neutron Spectra. Nuclear Fusion, 56, Article ID: 036001.
http://dx.doi.org/10.1088/0029-5515/56/3/036001
[3] Tabak, M. (1996) What Is the Role of Tritium-Poor Fuels in ICF? Nuclear Fusion, 36, 147.
http://dx.doi.org/10.1088/0029-5515/36/2/I03
[4] Atzeni, S. and Chiampi, M.L. (1997) Burn Performance of Fast Ignited, Tritium-Poor ICF Fuels. Nuclear Fusion, 37, 1665. http://dx.doi.org/10.1088/0029-5515/37/12/i01
[5] Feoktistov, L.P. (1998) Thermonuclear Detonation. Physics-Uspekhi, 41, 1139.
http://dx.doi.org/10.1070/PU1998v041n11ABEH000506
[6] Shmatov, M.L. (2010) Optimum Variant of DD Fusion Ignition for Thermonuclear Power Plants. Technical Physics Letters, 36, 386.
[7] Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnik, M.K., Lancaster, L.K., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, A.P., Sakabe, S., Tanaka, A.K., Youssef, A., Zepf, M. and Yamanaka, T. (2002) Fast Heating Scalable to Laser Fusion Ignition. Nature, 418, 933.
[8] Jarvis, N.O. (2002) Neutron Spectrometry at JET (1983-1999). Nuclear Instruments and Methods in Physics Research Section A, 476, 474-484.
http://dx.doi.org/10.1016/S0168-9002(01)01493-0
[9] Kallne, J., Gorini, G. and Ballabio, L. (1997) Feasibility of Neutron Spectrometry Diagnostic for the Fuel Ion Density in DT Tokamak Plasmas. Review of Scientific Instruments, 68, 581.
http://dx.doi.org/10.1063/1.1147658
[10] Okada, K., Kondo, K., Sato, S., et al. (2006) Development of Neutron Measurement System for nd/nt Fuel Ratio Measurement in ITER Experiments. Review of Scientific Instruments, 77, Article ID: 10E726.
[11] Elevant, T., Aronsson, D., Belle, V.P., et al. (1991) The JET Neutron Time-of-Flight Spectrometer. Nuclear Instruments and Methods in Physics Research Section A, 306, 331-342.
http://dx.doi.org/10.1016/0168-9002(91)90340-v
[12] Gorini, G., Kallne, J. and Ballabio, L. (1997) Neutron Spectrometry for Plasma Rotation. Review of Scientific Instruments, 68, 561.
http://dx.doi.org/10.1063/1.1147654
[13] Giacomelli, L., Hjalmarsson, A., Sjostrand, H., et al. (2005) Advanced Neutron Diagnostics for JET and ITER Fusion Experiments. Nuclear Fusion, 45, 1191.
http://dx.doi.org/10.1088/0029-5515/45/9/019
[14] Elevant, T., Belle, V.P., Jarvis, N.O., et al. (1995) Measurements of Fusion Neutron Energy Spectra at JET by Means of Time-of-Flight Techniques. Nuclear Instruments and Methods in Physics Research Section A, 364, 333-341.
http://dx.doi.org/10.1016/0168-9002(95)00346-0
[15] Asai, K., Yukawa, K., Iguchi, T., Iwai, H., Naoi, N. and Kawarabayashi, J. (2008) Improvement of Multi-Scattering Time-of-Flight Neutron Spectrometer to Measure the D/T Ratio in a Fusion Experimental Reactor. Journal of Nuclear Science and Technology, 6, 69-72.
http://dx.doi.org/10.1080/00223131.2008.10875979
[16] Youssef, A., Kodama, R., Habara, H., Tanaka, A.K., Sentoku, Y., Tampo, M. and Toyama, Y. (2005) Broad-Range Neutron Spectra Identification in Ultraintense Laser Interactions with Carbon-Deuterated Plasma. Physics of Plasmas, 12, Article ID: 110703.
http://dx.doi.org/10.1063/1.2131847
[17] Youssef, A., Kodama, R. and Tampo, M. (2006) Investigation of Laser Ion Acceleration inside Irradiated Solid Targets by Neutron Spectroscopy. Physics of Plasmas, 13, Article ID: 030701.
http://dx.doi.org/10.1063/1.2177230
[18] Youssef, A., Kodama, R. and Tampo, M. (2006) Study of Proton Acceleration at the Target Front Surface Laser-Solid Interactions by Neutron Spectroscopy. Physics of Plasmas, 13, Article ID: 030702.
http://dx.doi.org/10.1063/1.2183707
[19] Youssef, A. and Kodama, R. (2010) Neutron Production in Ultraintense Laser Interactions with Carbon-Deuterated Plasma at Intensities of 1018 W/cm2. Nuclear Fusion, 50, 035010.
[20] Youssef, A. (2013) Neutron Yields of Nuclear Reactions Induced by Ion Acceleration in Carbon-Deuterated Plasma Produced by Ultra-Intense Lasers. Physica Scripta, 87, Article ID: 015501.
http://dx.doi.org/10.1088/0031-8949/87/01/015501
[21] Youssef, A. (2016) Counting of Ultraintense Laser-Driven Neutrons from the Pulse Height of Time-of-Flight Detector Includes Ultrafast Timing Plastic Scintillator. Journal of Instrumentation, 11, Article ID: P02009.
http://dx.doi.org/10.1088/1748-0221/11/02/P02009
[22] Sunahara, A., Johzaki, T., Nagatomo, H., Mima, K., Shiraga, H., Azechi, H., Mori, Y. and Kitagawa, Y. (2016) Direct Heating of Imploded Plasma in the Fast Ignition. Journal of Physics: Conference Series, 688, Article ID: 012114.
http://dx.doi.org/10.1088/1742-6596/688/1/012114
[23] Asai, K., Naoi, N., Iguchi, T., Watanabe, K., Kawarabayashi, J. and Nishitani, T. (2006) Neutron Spectrometer for DD/DT Burning Ratio Measurement in Fusion Experimental Reactor. Journal of Nuclear Science and Technology, 43, 320-324.
http://dx.doi.org/10.1080/18811248.2006.9711097
[24] Drosg, M. (2000) International Atomic Energy Agency (IAEA)-Nuclear Data Services (NDS)-Rev. 5, January (2000), Version 2.21 (May 2005).
[25] Liskien, H. and Paulsen, A. (1973) Neutron Production Cross Sections and Energies for the Reactions T(p, n)3He, D(d, n)3He, and T(d, n)4 He. Nuclear Data Tables, 11, 569.
http://dx.doi.org/10.1016/S0092-640X(73)80081-6
[26] Rinderknecht, H.G., Rosenberg, M.J., Zylstra, A.B., Lahmann, B., Seguin, F.H, Frenje, J.A., Li, C.K., Gatu Johnson, M., Petrasso, R.D., Berzak Hopkins, L.F., Caggiano, J.A., Divol, L., Hartouni, E.P., Hatarik, R., Hatchett, S.P., Le Pape, S., Mackinnon, A.J., McNaney, J.M., Meezan, N.B., Moran, M.J., Bradley, P.A., Kline, J.L., Krasheninnikova, N.S., Kyrala, G.A., Murphy, T.J., Schmitt, M.J., Tregillis, I.L., Batha, S.H., Knauer, J.P. and Kilkenny, J.D. (2015) Using Multiple Secondary Fusion Products to Evaluate Fuel ρR, Electron Temperature, and Mix in Deuterium-Filled Implosions at the NIF. Physics of Plasmas, 22, Article ID: 082709.
http://dx.doi.org/10.1063/1.4928382

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.