The Effect of Energy Levels of the Electron Acceptor Materials on Organic Photovoltaic Cells

Abstract

Organic photovoltaic cells have been fabricated using copper phthalocyanine CuPc as electron donor and C60 or PCBM as electron acceptor. We have investigated the I-V measurements of two different structures: ITO/PEDOT: PSS/(CuPc:C60 or CuPc:PCBM)/BCP/Al. We have observed that the substitution of PCBM by C60 scales up the photocurrent and the efficiency of the devices. As for the open-circuit voltage and the fill factor, we have seen that Voc and FF depend on the energy difference between the highest occupied molecular orbital (HOMO) of CuPc and the lowest unoccupied molecular orbital (LUMO)of C60 or PCBM.

Share and Cite:

H. Derouiche, S. Saidi and A. Mohamed, "The Effect of Energy Levels of the Electron Acceptor Materials on Organic Photovoltaic Cells," Smart Grid and Renewable Energy, Vol. 2 No. 3, 2011, pp. 278-281. doi: 10.4236/sgre.2011.23031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Liu, Q. Wang, P. Jiang, R. Liu, G. L. Song, H. J. Zhu and S.-W. Yang, “The Photo- and Electrochemical Properties and Electronic Structures of Conjugated Diphenylanthrazolines,” Dyes and Pigments, Vol. 85, No. 1-2, 2010, pp. 51-56. doi:org/10.1016/j.dyepig.2009.10.003
[2] R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Furno, C. Uhrich, K. Leo and M. Riede,“Controlled Current Matching in Small Molecule Organic Tandem Solar Cells Using Doped Spacer Layers,” Journal of Applied Physics, Vol. 107, No. 4, 2010, pp. 044503-044506. doi:org/10.1063/1.3277051
[3] R. A?ch, B. Ratier, F. Tran-van, F. Goubard and C. Chevrot, “Small Molecule Organic Solar Cells Based on Phtha- locyanine/Perylene-Carbazole Donor-Acceptor Couple,” Thin Solid Films, Vol. 516, No. 20, 2008, pp. 7171-7175.
[4] R. Franke, B. Maennig, A. Petrich and M. Pfeiffer, “Long-Term Stability of Tandem Solar Cells Containing Small Organic Molecules,” Solar Energy Materials and Solar Cells, Vol. 92, No. 7, 2008, pp. 732-735. doi:org/10.1016/j.solmat.2007.12.001
[5] C. C. Leznoff and A. B. P. Lever, “Phthalocyanine: Properties and Applications,” VCH Publisher, New York, 1999, p. 291.
[6] H. Derouiche, H. Ben Miled and A. Belhadj Mohamed, “Enhanced Performance of a CuPc: PCBM Based Solar Cell Using Bathocuproine BCP or Nanostructured TiO2 as Hole-Blocking Layer,” Physica Status Solidi (A), Vol. 207, No. 2, 2010, pp. 479-483. doi:org/10.1002/pssa.200925424
[7] H. S. Shin, H. Lim, H. J. Song, H.-J. Shin, S.-M. Parkb and H. C. Choi, “Spontaneous Electron Transfer from C60 to Au Ions: Oxidation of C60 and Hole Doping,” Journal of Materials Chemistry, Vol. 20, No. 34, 2010, pp. 7183-7188. doi:org/10.1039/c0jm00783h
[8] M. Manceau, S. Chambon, A. Rivaton, J. L. Gardette, S. Guillerez and N. Lema?tre, “Effects of Long-Term UV-Visible Light Irradiation in the Absence of Oxygen on P3HT and P3HT: PCBM Blend,” Solar Energy Materials and Solar Cells, Vol. 94, No. 10, 2010, pp. 1572-1577. doi:org/10.1016/j.solmat.2010.03.012
[9] O. H. Kwon, K. Park and D. J. Jang, “Photoluminescence Dynamics and Spectra of C60 and C60? in VPI-5 Molecular Cages,” Chemical Physics Letters, Vol. 346, No. 3-4, 2001, pp. 195-200. doi:org/10.1016/S0009-2614(01)00967-8
[10] H. Derouiche and V. Djara, “Impact of the Energy Difference in LUMO and HOMO of the Bulk Heterojunctions Components on the Efficiency of Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 91, No. 13, 2007, pp. 1163-1167. doi:org/10.1016/j.solmat.2007.03.015
[11] B. Zimmermann, M. Glatthaar, M. Niggermann, M. Riede and A. Hinsch, “Electroabsorption Studies of Organic Bulk-Heterojunction Solar Cells,” Thin Solid Films, Vol. 493, No. 1-2, 2005, pp. 170-174. doi:org/10.1016/j.tsf.2005.04.089

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.