Share This Article:

A Computer Program for the Newman-Janis Algorithm

Full-Text HTML XML Download Download as PDF (Size:778KB) PP. 2226-2230
DOI: 10.4236/jmp.2015.615227    2,465 Downloads   2,644 Views   Citations

ABSTRACT

A REDUCE code for the Newman-Janis algorithm is described. This algorithm is intended to include rotation into nonrotating solutions of the Einstein field equations with spherically symmetry or perturbed spherically symmetry and has been successfully applied to many spacetimes. The applicability of the code is restricted to metrics containing potentials of the form 1/r.

Cite this paper

Gutiérrez-Chávez, C. , Frutos-Alfaro, F. , Cordero-García, I. and Bonatti-González, J. (2015) A Computer Program for the Newman-Janis Algorithm. Journal of Modern Physics, 6, 2226-2230. doi: 10.4236/jmp.2015.615227.

References

[1] Newman, E.T. and Janis, A.I. (1965) Journal of Mathematical Physics, 6, 915-917.
http://dx.doi.org/10.1063/1.1704350
[2] d’Inverno, R. (1992) Introducing Einstein’s Relativity. Oxford University Press, USA.
[3] Schwarzschild, K. (1916) Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 7, 189-196.
[4] Kerr, R.P. (1963) Physical Review Letters, 11, 237-238.
http://dx.doi.org/10.1103/PhysRevLett.11.237
[5] Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965) Journal of Mathematical Physics, 6, 918-919. http://dx.doi.org/10.1063/1.1704351
[6] Reissner, H. (1916) Annalen der Physik, 50, 106-120.
http://dx.doi.org/10.1002/andp.19163550905
[7] Nordstrøm, G. (1918) Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, 20, 1238-1245.
[8] Demiański, M. and Newman, E.T. (1966) Bulletin de l Académie Polonaise des Sciences, 14, 653-657.
[9] Taub, A.H. (1951) Annals of Mathematics (Second Series), 53, 472-490.
http://dx.doi.org/10.2307/1969567
[10] Newman, E., Tamburino, L. and Unti, T. (1963) Journal of Mathematical Physics, 4, 915-923.
http://dx.doi.org/10.1063/1.1704018
[11] Talbot, C.J. (1969) Communications in Mathematical Physics, 13, 45-61.
http://dx.doi.org/10.1007/BF01645269
[12] Quevedo, H. (1992) General Relativity and Gravitation, 24, 693-703.
http://dx.doi.org/10.1007/BF00760076
[13] Flaherty, E.J. (1976) Hermitian and Kählerian Geometry in Relativity (Lecture Notes in Physics 46). Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/3-540-07540-2
[14] Kim, H. (1999) Physical Review D, 59, Article ID: 064002.
[15] Ibohal, N. (2005) General Relativity and Gravitation, 37, 19-51.
http://dx.doi.org/10.1007/s10714-005-0002-6
[16] Krori, K.D. and Bhattacharjee, D.R. (1982) Journal of Mathematical Physics, 23, 637-638.
http://dx.doi.org/10.1063/1.525401
[17] Janis, A.I., Newman, E.T. and Winicour, J. (1968) Physical Review, 20, 878-880.
[18] Hearn, A.C. (1999) REDUCE (User’s and Contributed Packages Manual). Konrad-Zuse-Zentrum für Informationstechnik, Berlin.
[19] Drake, S.P. and Szekeres, P. (2000) General Relativity and Gravitation, 32, 445-458.
http://dx.doi.org/10.1023/A:1001920232180
[20] Glass, E.N. and Krisch, J.P. (2004) Classical and Quantum Gravity, 21, 5543.
http://dx.doi.org/10.1088/0264-9381/21/23/015
[21] Boyer, R.H. and Lindquist, R.W. (1967) Journal of Mathematical Physics, 8, 265-281.
http://dx.doi.org/10.1063/1.1705193

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.