Natural Selection and Thermodynamics of Biological Evolution

Download Download as PDF (Size:600KB)  HTML   XML  PP. 117-126  
DOI: 10.4236/ns.2015.73013    3,598 Downloads   4,038 Views   Citations

ABSTRACT

The author of this article proposes that the representation of Charles Darwin and Alfred Wallace’s theory on “variation and selection” in the living world is a reflection of the action of hierarchical thermodynamics. Hierarchical thermodynamics is based on the law of temporal hierarchies and on the principle of substance stability. This principle enables the transmission of thermodynamic information between lower and higher structural hierarchies, in both forward and reverse direction: from nucleic acids to higher structural hierarchies and back. The principle of substance stability, in fact, is the main dynamical and thermodynamic mechanism of natural selection. It is alleged that the natural selection of atoms, molecules, organisms, populations, and other hierarchical structures takes place under the action of a variety of internal factors within organisms and the external environmental factors that can be considered as tropisms. Forms (design) of living organisms are formed as a result of spontaneous and non-spontaneous processes that lead to the adaptation of living systems to the environment. The selection is carried out as a result of the impacts of different energy types and the principle of substance stability at all levels of hierarchical structures. Actions of tropisms are presented by various members of the generalized Gibbs equation.

Cite this paper

Gladyshev, G. (2015) Natural Selection and Thermodynamics of Biological Evolution. Natural Science, 7, 117-126. doi: 10.4236/ns.2015.73013.

References

[1] Gibbs, J.W. (1876) On the Equilibrium of Heterogeneous Substances. Vol. 1, Thermodynamics, Ox Bow Press, Connecticut.
[2] Gladyshev, G.P. (1978) On the Thermodynamics of Biological Evolution. Journal of Theoretical Biology, 75, 425-441.
http://dx.doi.org/10.1016/0022-5193(78)90354-5
[3] Гладышев, Г.П. (1988) Термодинамикаимакрокинетикаприродныхиерархическихпроцессов, Наука, Москва.
[4] Гладышев, Г.П. (1995) Термодинамика иерархических систем. В: Зефиров Н.С., Ред., Химическая энциклопедия, 4, Большая Российская Энциклопедия, Москва, 1062.
http://www.xumuk.ru/encyklopedia/2/4371.html
[5] Gladyshev, G.P. (1997) Thermodynamics Theory of the Evolution of Living Beings. Nova Science Publishers, Inc., Commack, New York.
[6] Gladyshev, G.P. (1994) А Motive Force of Biological Evolution. Herald of Russian Academy of Science, 64, 118.
[7] Гладышев, Г.П. (2003) Супрамолекулярная термодинамика—Ключ к осознанию явления жизни (Что такое жизнь с точки зрения физико-химика), Издание второе, Институт компьютерных исследований, Москва-Ижевск.
[8] Гладышев, Г.П. (2004) Об истории создания термодинамической теории происхождения жизни, биологической эволюции и старения живых существ. Журнал История науки и техник, 1, 28.
http://gladyshevevolution.wordpress.com/
[9] Denbigh, K.G. (1953) Thermodynamics of the Steady State. Methuen, London.
[10] Prigogine, I. (1980) From Being to Becoming: Time and Complexity in the Physical Sciences. W. H. Freeman and Company, San Francisco.
[11] El-Diasty, F. (2011) Origin of Order: Emergence and Evolution of Biological Organization as a Problem in Thermal Physics. Advances in Life Sciences, 1, 30-39.
http://article.sapub.org/10.5923.j.als.20110101.06.html
[12] Sychev, V.V. (1973) Complex Thermodynamic Systems. Consultants Bureau, New York and London.
http://dx.doi.org/10.1007/978-1-4684-1605-3
[13] Sychev, V.V. (1986) Thermodynamics of Complex Systems. Energoatomizdat, Moscow.
[14] Сычев, В.В. (2009) Сложные термодинамические системы. 5-е Издание, Издательский дом МЭИ, Москва.
[15] Gladyshev, G.P. (2003) Thermodynamic Self-Organization as a Mechanism of Hierarchical Structures Formation of Biological Matter. Progress in Reaction Kinetics and Mechanism, 28, 157-188.
http://dx.doi.org/10.3184/007967403103165495
[16] Gladyshev, G.P. (2004) Macrothermodynamics of Biological Evolution: Aging of Living Beings. International Journal of Modern Physics B, 18, 801-825.
http://dx.doi.org/10.1142/S0217979204023970
[17] Gladyshev, G.P. (2007) Leonhard Euler’s Methods and Ideas Live in the Thermodynamic Hierarchical Theory of Biological Evolution. International Journal of Applied Mathematics and Statistics, 11, 52-68.
[18] Гладышев, Г.П. (2014) Термодинамикавозникновенияжизни, эволюцииистарения. Успехигеронтол., 27, 225- 228.
[19] Thims, L., Ed. (2014) EoHT.
http://www.eoht.info/
[20] Gladyshev, G. (2014) Life as a Phenomenon. International Journal of Applied Life Sciences and Engineering, 1, 97-98.
http://www.ijalse.org/Volume 1Issue 1
[21] Bogolubov, N.N. (1990) Selected Works, Part 1, Dynamical Theory. Gordon and Breach Science Publishers, New York.
[22] Gladyshev, G.P. (2006) The Principle of Substance Stability Is Applicable to All Levels of Organization of Living Matter. International Journal of Molecular Sciences, 7, 98-110.
http://www.mdpi.org/ijms/papers/i7030098.pdf
http://dx.doi.org/10.3390/i7030098
[23] Gladyshev, G.P. (1999) On the Thermodynamics, Entropy and Evolution of Biological Systems: What Is Life from a Physical Chemist’s Viewpoint? Entropy, 1, 9-20.
http://www.mdpi.com/1099-4300/1/2
[24] Gladyshev, G.P. (2014) Life as a Process of the Existence, Reproduction, and Aging of Polyhierarchical Systems. Advances in Gerontology, 4, 1-2.
http://dx.doi.org/10.1134/S2079057014010032
[25] Gladyshev, G.P. (2014) The Thermodynamic Theory of Evolution and Ageing. Advances in Gerontology, 4, 109-118.
http://dx.doi.org/10.1134/S2079057014020064
[26] Sterner, R.W. and Elser, J.J. (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
[27] Gladyshev, G.P. (2014) On the Change in the Isotope Compositions of Living Organisms during Aging and Evolution. Advances in Gerontology, 4, 107-108.
[28] Гладышев, Г.П. (2013) Тропизм как общее явление во вселенной. Можно ли поведение систем различной природы описать Единой формулой Международный симпозиум Современные проблемы высшего образования и науки в области химии и химической инженерии, Издательство Казахского Национального Университета, Алматы, 30-31 мая 2013, 7-11.
[29] Gladyshev, G. (2014) Thermodynamics Optimizes the Physiology of Life. Philosophy & Cosmology, 12, 152-162.
http://ispcjournal.org/journals/2014/PhC_2014.pdf
[30] Гладышев, Г.П. (2014) Дизайнитермодинамика. Международный творческий проект ИСКУССТВО-ПРИРОДА- СПОРТ, Российская Академия художеств, Москва, 23-25 января 2014.
[31] Gladyshev, G.P. (2014) Иерархическая термодинамика формирует дизайн окружающего мира.
http://gladyshevevolution.wordpress.com/
[32] Gladyshev, G.P. (2007) The Thermodynamic Theory of Aging in Action: Medical Nutrition Recommendations for Patients of Any Age. In: Klats, R. and Goldman, R., Eds., Anti-Aging Therapeutics, Volume IX, American Academy of Anti-Aging Medicine, Chicago, 135-152.
[33] Gladyshev, G.P. (2007) Hierarchical Thermodynamics—General Theory of Existence and Living World Development: Model of Aging and Anti-Aging Quality of Foods and Medicines. Proceedings of the 15th Annual World Congress on Anti-Aging Medicine & Regenerative Biomedical Technologies, Las Vegas, 12-15 December 2007.
http://www.prolibraries.com/a4m/?select=session&sessionID=1152
[34] Gladyshev, G.P. (1999) Method for Measuring the Gerontological Value of Biologically Active Substances and Compositions, Mainly Food and Cosmetic Products. Canadian Patent No. 2327747.
[35] Williams, R.J.P. and Frausto da Silva, J.J.R. (1997) The Natural Selection of the Chemical Elements: The Environment and Life’s Chemistry. Clarendon Press, Oxford.

  
comments powered by Disqus
  • ADVERTISEMENT

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.