Share This Article:

High Plasma Concentrations of Sclerostin, an Inhibitor of the Wnt Signaling Pathway, in Young Horses Affected by Osteochondrosis

Full-Text HTML XML Download Download as PDF (Size:3022KB) PP. 335-342
DOI: 10.4236/ojo.2014.412051    2,973 Downloads   3,359 Views   Citations

ABSTRACT

Osteochondrosis (OC) is a developmental disease in horses with a significant impact on the horse’s welfare and performance. The early disturbance of enchondral ossification progresses to inflammatory and healing process in older horses. Metabolic pathway analysis showed an obvious dysregulation of several signaling pathways related to cartilage formation and cartilage repair such as Wnt/β-catenin, Indian hedgehog and TGF-β signaling pathways. Other regulated genes appeared to be involved in high carbohydrate diet, abnormal insulin metabolism or inflammation. Sclerostin is an osteocyte-secreted soluble antagonist of the Wnt/β-catenin signaling pathway. It is crucial for osteoblast development and activity and is increased in naturally occurring lesions of equine osteochondrosis. The aim of this study is to compare the circulating sclerostin levels between OC-affected (n = 20) and healthy horses (n = 19). A significant linear regression between plasma sclerostin and age is observed especially in the healthy young horses. The mean plasma sclerostin concentration is significantly higher in young horses suffering from osteochondrosis compared to the control horses. These results reinforce the possible role of the Wnt/β-catenin signaling pathway in the OC pathogeny. The inhibition of this essential pathway could disturb the osteo-chondral differentiation. More studies are currently needed to define the eventual clinic interest of plasma sclerostin as future biomarker in bone and cartilage diseases.

Cite this paper

Serteyn, D. , Mendoza, L. , Sandersen, C. , Caudron, I. , Piquemal, D. , Chavatte-Palmer, P. and Lejeune, J. (2014) High Plasma Concentrations of Sclerostin, an Inhibitor of the Wnt Signaling Pathway, in Young Horses Affected by Osteochondrosis. Open Journal of Orthopedics, 4, 335-342. doi: 10.4236/ojo.2014.412051.

References

[1] Rejno, S. and Stromberg, B. (1978) Osteochondrosis in the Horse. II. Pathology. Acta Radiologica-Supplement, 358, 153-178.
[2] Ytrehus, B., Carlson, C.S. and Ekman, S. (2007) Etiology and Pathogenesis of Osteochondrosis. Veterinary Pathology, 44, 429-448.
http://dx.doi.org/10.1354/vp.44-4-429
[3] Verwilghen, D.R., Janssens, S., Busoni, V., Pille, F., Johnston, C. and Serteyn, D. (2013) Do Developmental Orthopaedic Disorders Influence Future Jumping Performances in Warmblood Stallions? Equine Veterinary Journal, 45, 578-581.
http://dx.doi.org/10.1111/evj.12027
[4] McIlwraith, C.W. (1993) Inferences from Referred Clinical Cases of Osteochondritis Dissecans. Equine Veterinary Journal, 25, 27-30.
http://dx.doi.org/10.1111/j.2042-3306.1993.tb04850.x
[5] Jeffcott, L.B. (1991) Osteochondrosis in the Horse-Searching for the Key to Pathogenesis. Equine Veterinary Journal, 23, 331-338.
http://dx.doi.org/10.1111/j.2042-3306.1991.tb03733.x
[6] Serteyn, D., Piquemal, D., Vanderheyden, L., Lejeune, J.P., Verwilghen, D. and Sandersen, C. (2010) Gene Expression Profiling from Leukocytes of Horses Affected by Osteochondrosis. Journal of Orthopaedic Research, 28, 965-970.
[7] Power, J., Hernandez, P., Wardale, J. and Henson, F.M.D. (2014) Alterations in Sclerostin Protein in Lesions of Equine Osteochondrosis. Veterinary Record Open, 1, e000005-e000005.
http://dx.doi.org/10.1136/vropen-2013-000005
[8] ten Dijke, P., Krause, C., de Gorter, D.J., Lowik, C.W. and van Bezooijen, R.L. (2008) Osteocyte-Derived Sclerostin Inhibits Bone Formation: Its Role in Bone Morphogenetic Protein and Wnt Signaling. Journal of Bone and Joint Surgery, 90(S1), 31-35.
http://dx.doi.org/10.2106/JBJS.G.01183
[9] Moester, M.J., Papapoulos, S.E., Lowik, C.W. and van Bezooijen, R.L. (2010) Sclerostin: Current Knowledge and Future Perspectives. Calcified Tissue International, 87, 99-107.
http://dx.doi.org/10.1007/s00223-010-9372-1
[10] Chan, B.Y., Fuller, E.S., Russell, A.K., Smith, S.M., Smith, M.M., Jackson, M.T., Cake, M.A., Read, R.A., Bateman, J.F., Sambrook, P.N. and Little, C.B. (2011) Increased Chondrocyte Sclerostin May Protect against Cartilage Degradation in Osteoarthritis. Osteoarthritis and Cartilage, 19, 874-885.
http://dx.doi.org/10.1016/j.joca.2011.04.014
[11] Gaudio, A., Privitera, F., Battaglia, K., Torrisi, V., Sidoti, M.H., Pulvirenti, I., Canzonieri, E., Tringali, G. and Fiore, C.E. (2012) Sclerostin Levels Associated with Inhibition of the Wnt/Beta-Catenin Signaling and Reduced Bone Turnover in Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology & Metabolism, 97, 3744-3750.
http://dx.doi.org/10.1210/jc.2012-1901
[12] Appelman-Dijkstra, N.M. and Papapoulos, S.E. (2014) Novel Approaches to the Treatment of Osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism, 28, 843-857.
http://dx.doi.org/10.1016/j.beem.2014.07.003
[13] Zhang, H., He, J.W., Wang, C., Zhang, Z., Yue, H., Hu, W.W., Gu, J.M., Hu, Y.Q., Li, M., Fu, W.Z. and Zhang, Z.L. (2014) Associations of Polymorphisms in the SOST Gene and Bone Mineral Density in Postmenopausal Chinese Women. Osteoporosis International, 25, 2797-2803.
http://dx.doi.org/10.1007/s00198-014-2832-0
[14] Brabnikova-Maresova, K., Jarosova, K., Pavelka, K. and Stepan, J.J. (2014) Serum Sclerostin in Adult High-Activity Patients with Juvenile Idiopathic Arthritis. Arthritis Research & Therapy, 16, 460.
http://dx.doi.org/10.1186/s13075-014-0460-x
[15] Denoix, J.M., Jacquet, S., Lepeule, J., Crevier-Denoix, N., Valette, J.P. and Robert, C. (2013) Radiographic Findings of Juvenile Osteochondral Conditions Detected in 392 Foals Using a Field Radiographic Protocol. The Veterinary Journal, 197, 44-51.
http://dx.doi.org/10.1016/j.tvjl.2013.03.040
[16] Modder, U.I., Hoey, K.A., Amin, S., McCready, L.K., Achenbach, S.J., Riggs, B.L., Melton 3rd, L.J. and Khosla, S. (2011) Relation of Age, Gender, and Bone Mass to Circulating Sclerostin Levels in Women and Men. Journal of Bone and Mineral Research, 26, 373-379.
http://dx.doi.org/10.1002/jbmr.217
[17] Hilla, D. and Distl, O. (2014) Heritabilities and Genetic Correlations between Fetlock, Hock and Stifle Osteochondrosis and Fetlock Osteochondral Fragments in Hanoverian Warmblood Horses. Journal of Animal Breeding and Genetics, 131, 71-81.
http://dx.doi.org/10.1111/jbg.12062
[18] Dawson-Hughes, B., Harris, S.S., Ceglia, L. and Palermo, N.J. (2014) Serum Sclerostin Levels Vary with Season. Journal of Clinical Endocrinology & Metabolism, 99, E149-E152.
http://dx.doi.org/10.1210/jc.2013-3148
[19] Vander Heyden, L., Lejeune, J.P., Caudron, I., Detilleux, J., Sandersen, C., Chavatte, P., Paris, J., Deliege, B. and Serteyn, D. (2013) Association of Breeding Conditions with Prevalence of Osteochondrosis in Foals. Veterinary Record, 172, 68.
http://dx.doi.org/10.1136/vr.101034
[20] Robert, C., Valette, J.P., Jacquet, S., Lepeule, J. and Denoix, J.M. (2013) Study Design for the Investigation of Likely Aetiological Factors of Juvenile Osteochondral Conditions (JOCC) in Foals and Yearlings. The Veterinary Journal, 197, 36-43.
http://dx.doi.org/10.1016/j.tvjl.2013.03.039
[21] Lepeule, J., Bareille, N., Robert, C., Valette, J.P., Jacquet, S., Blanchard, G., Denoix, J.M. and Seegers, H. (2013) Association of Growth, Feeding Practices and Exercise Conditions with the Severity of the Osteoarticular Status of Limbs in French Foals. The Veterinary Journal, 197, 65-71.
http://dx.doi.org/10.1016/j.tvjl.2013.03.043
[22] Serteyn, D., Piquemal, D., Mendoza, L., Caudron, I., Noguier, F., Bruno, R., Sandersen, C. and Lejeune, J.P. (2014) Osteochondrosis-Related Gene Expression in Equine Leukocytes Differs among Affected Joints in Foals. Journal of Molecular Biomarkers & Diagnosis, 5, 189.
http://dx.doi.org/10.4172/2155-9929.1000189
[23] Mendoza, L., Piquemal, D., Lejeune, J.P., Vander Heyden, L., Noguier, F., Bruno, R., Sandersen, C. and Serteyn, D. (2014) Age-Dependent Expression of Osteochondrosis-Related Genes in Equine Leukocytes. Veterinary Record, Unpublished.
[24] Desjardin, C., Vaiman, A., Mata, X., Legendre, R., Laubier, J., Kennedy, S.P., Laloe, D., Barrey, E., Jacques, C., Cribiu, E.P. and Schibler, L. (2014) Next-Generation Sequencing Identifies Equine Cartilage and Subchondral Bone miRNAs and Suggests Their Involvement in Osteochondrosis Physiopathology. BMC Genomics, 15, 798.
http://dx.doi.org/10.1186/1471-2164-15-798
[25] Xu, H., Duan, J., Ning, D., Li, J., Liu, R., Yang, R., Jiang, J.X. and Shang, P. (2014) The Role of Wnt Signaling in Fracture Healing. BMB Reports.
[26] Baron, R. and Rawadi, G. (2007) Targeting the Wnt/Beta-Catenin Pathway to Regulate Bone Formation in the Adult Skeleton. Endocrinology, 148, 2635-2643.
http://dx.doi.org/10.1210/en.2007-0270
[27] Garcia-Martin, A., Rozas-Moreno, P., Reyes-Garcia, R., Morales-Santana, S., Garcia-Fontana, B., Garcia-Salcedo, J.A. and Munoz-Torres, M. (2012) Circulating Levels of Sclerostin Are Increased in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology & Metabolism, 97, 234-241.
http://dx.doi.org/10.1210/jc.2011-2186
[28] Klangjareonchai, T. and Nimitphong, H. (2014) Circulating Sclerostin and Irisin Are Related and Interact with Gender to Influence Adiposity in Adults with Prediabetes. International Journal of Endocrinology, 2014, Article ID: 261545.
[29] Desjardin, C., Chat, S., Gilles, M., Legendre, R., Riviere, J., Mata, X., Balliau, T., Esquerre, D., Cribiu, E.P., Betch, J.M. and Schibler, L. (2014) Involvement of Mitochondrial Dysfunction and ER-Stress in the Physiopathology of Equine Osteochondritis Dissecans (OCD). Experimental and Molecular Pathology, 96, 328-338.
http://dx.doi.org/10.1016/j.yexmp.2014.03.004
[30] Yoon, J.C., Ng, A., Kim, B.H., Bianco, A., Xavier, R.J. and Elledge, S.J. (2010) Wnt Signaling Regulates Mitochondrial Physiology and Insulin Sensitivity. Genes & Development, 24, 1507-1518.
http://dx.doi.org/10.1101/gad.1924910
[31] Robling, A.G., Niziolek, P.J., Baldridge, L.A., Condon, K.W., Allen, M.R., Alam, I., Mantila, S.M., Gluhak-Heinrich, J., Bellido, T.M., Harris, S.E. and Turner, C.H. (2008) Mechanical Stimulation of Bone in Vivo Reduces Osteocyte Expression of Sost/Sclerostin. The Journal of Biological Chemistry, 283, 5866-5875.
http://dx.doi.org/10.1074/jbc.M705092200
[32] Reppe, S., Noer, A., Grimholt, R.M., Halldorsson, B.V., Medina-Gomez, C., Gautvik, V.T., Olstad, O.K., Berg, J.P., Datta, H., Estrada, K., Hofman, A., Uitterlinden, A.G., Rivadeneira, F., Lyle, R., Collas, P. and Gautvik, K.M. (2014) Methylation of Bone SOST, Its mRNA, and Serum Sclerostin Levels Correlate Strongly with Fracture Risk in Postmenopausal Women. Journal of Bone and Mineral Research, Published Online.
http://dx.doi.org/10.1002/jbmr.2342
[33] Delgado-Calle, J., Arozamena, J., Perez-Lopez, J., Bolado-Carrancio, A., Sanudo, C., Agudo, G., de la Vega, R., Alonso, M.A., Rodriguez-Rey, J.C. and Riancho, J.A. (2013) Role of BMPs in the Regulation of Sclerostin as Revealed by an Epigenetic Modifier of Human Bone Cells. Molecular and Cellular Endocrinology, 369, 27-34.
http://dx.doi.org/10.1016/j.mce.2013.02.002

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.