Share This Article:

Evaluation of Molecular Techniques in Characterization of Deep Terrestrial Biosphere

Full-Text HTML Download Download as PDF (Size:3224KB) PP. 468-487
DOI: 10.4236/oje.2014.48040    2,599 Downloads   3,569 Views   Citations

ABSTRACT

A suite of molecular methods targeting 16S rRNA genes (i.e., DGGE, clone and high-throughput [HTP] amplicon library sequencing) was used to profile the microbial communities in deep Fennoscandian crystalline bedrock fracture fluids. Variation among bacterial 16S rRNA genes was examined with two commonly used primer pairs: P1/P2 and U968f/U1401r. DGGE using U968f/ U1401r mostly detected β-, γ-proteobacteria and Firmicutes, while P1/P2 primers additionally detected other proteobacterial clades and candidate divisions. However, in combination with clone libraries the U968f/U1401r primers detected a higher bacterial diversity than DGGE alone. HTP amplicon sequencing with P1/P2 revealed an abundance of the DGGE bacterial groups as well as many other bacterial taxa likely representing minor components of these communities. Archaeal diversity was investigated via DGGE or HTP amplicon sequencingusing primers A344F/ 519RP. The majority of archaea detected with HTP amplicon sequencing belonged to uncultured Thermoplasmatales and Pendant 33/DHVE3, 4, 6 groups. DGGE of the same samples detected mostly SAGMEG and Methanosarcinales archaea, but almost none of those were revealed by HTP amplicon sequencing. Overall, our results show that the inferred diversity and composition of microbial communities in deep fracture fluids is highly dependent on analytical technique and that the method should be carefully selected with this in mind.

Cite this paper

Bomberg, M. , Nyyssönen, M. , Nousiainen, A. , Hultman, J. , Paulin, L. , Auvinen, P. and Itävaara, M. (2014) Evaluation of Molecular Techniques in Characterization of Deep Terrestrial Biosphere. Open Journal of Ecology, 4, 468-487. doi: 10.4236/oje.2014.48040.

References

[1] Haveman, S.H., Pedersen, K. and Routsalainen, P. (1999) Distribution and Metabolic Diversity of Microorganisms in Deep Igneous Rock Aquifers of Finland. Geomicrobiology Journal, 16, 277-294.
http://dx.doi.org/10.1080/014904599270541
[2] Itavaara, M., Nyyssonen, M., Bomberg, M., Nousiainen, A., Kapanen, A., Ahonen, A., Hultman, J., Paulin, L., Auvinen, P. and Kukkonen, I. (2011) Microbiological Sampling and Analysis of Outokumpu Deep Borehole Biosphere in 2007-2008. Outokumpu Deep Drilling Project 2003-2010, Special Paper Vol. 51, Kukkonen, I., Ed., Geological Survey of Finland, Espoo, 119-206.
[3] Itavaara, M., Nyyssonen, M., Kapanen, A., Nousiainen, A., Ahonen, L. and Kukkonen, I. (2011) Characterization of Bacterial Diversity Down to a Depth of 1500 m of the Outokumpu Deep Borehole. FEMS Microbiology Ecology, 77, 295-309. http://dx.doi.org/10.1111/j.1574-6941.2011.01111.x
[4] Nyyssonen, M., Bomberg, M., Kapanen, A., Nousiainen, A., Pitkanen, P. and Itavaara, M. (2012) Methanogenic and Sulphate-Reducing Microbial Communities in Deep Groundwater of Crystalline Rock Fractures in Olkiluoto, Finland. Geomicrobiology Journal, 29, 863-878.
http://dx.doi.org/10.1080/01490451.2011.635759
[5] Nyyssonen, M., Hultman, J., Ahonen, L., Kukkonen, I., Paulin, L., Laine, P., Itavaara, M. and Auvinen, P. (2014) Taxonomically and Functionally Diverse Microbial Communities in Deep Crystalline Rocks of the Fennoscandian Shield. The ISME Journal, 8, 126-138. http://dx.doi.org/10.1038/ismej.2013.125
[6] Haveman, S.A. and Pedersen, K. (2002) Distribution of Culturable Anaerobic Microorganisms in Fennoscandian Shield Groundwater. FEMS Microbiology Ecology, 39, 129-137.
http://dx.doi.org/10.1111/j.1574-6941.2002.tb00914.x
[7] Hallbeck, L. and Pedersen, K. (2008) Characterization of Microbial Processes in Deep Aquifers of the Fennoscandian Shield. Applied Geochemistry, 23, 1796-1819.
http://dx.doi.org/10.1016/j.apgeochem.2008.02.012
[8] Pedersen, K., Arlinger, J., Eriksson, S., Hallbeck, A., Hallbeck, L. and Johansson, J. (2008) Numbers, Biomass and Cultivablediversity of Microbialpopulationsrelate to Depth and Borehole-Specific Conditions?in Groundwater from Depths of 4 450 m in Olkiluoto, Finland. The ISME Journal, 2, 760-775. http://dx.doi.org/10.1038/ismej.2008.43
[9] Torsvik, V. and Ovreas, L. (2002) Microbial Diversity and Function in Soil: From Genes to Ecosystems. Current Opinions in Microbiology, 5, 240-245. http://dx.doi.org/10.1016/S1369-5274(02)00324-7
[10] Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiology Reviews, 59, 143-169.
[11] Eydallin, G., Ryall, B., Maharjan, R. and Ferenci, T. (2014) The Nature of Laboratory Domestication Changes of Freshly Isolated Escherichia coli Strains. Environmental Microbiology, 16, 813-828.
http://dx.doi.org/10.1111/1462-2920.12208
[12] Teske, A. and Biddle, J.F. (2008) Analysis of Deep Subsurface Microbial Communities by Functional Genes and Genomics. In: Dilek, Y., Furnes, H. and Muehlenbachs, K., Eds., Links between Geological Processes, Microbial Activities and Evolution of Life, Springer Science+Business Media B.V., Berlin, Heidelberg, 159-176.
[13] Purkamo, L., Bomberg, M., Nyyssonen, M., Kukkonen, I., Ahonen, L., Kietavainen, R. and Itavaara, M. (2013) Dissecting the Deep Biosphere: Retrieval and Analysis of Authentic Microbial Communities from Packer-Isolated Deep Crystalline Bedrock Fractures Zones. FEMS Microbiology Ecology, 85, 324-337.
http://dx.doi.org/10.1111/1574-6941.12126
[14] Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R.S., Magrum, L.J., Zablen, L.B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Luehrsen, K.R., Chen, K.N. and Woese, C.R. (1980) The Phylogeny of Prokaryotes. Science, 209, 457-463.
http://dx.doi.org/10.1126/science.6771870
[15] Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K.H., Ludwig, W., Glockner, F.O. and RossellóMóra, R. (2008) The All-Species Living Tree Project: A 16S rRNA-Based Phylogenetic Tree of All Sequenced Type Strains. Systematic and Applied Microbiology, 31, 241-250.
http://dx.doi.org/10.1016/j.syapm.2008.07.001
[16] Akob, D.M., Mills, H.J. and Kostka, J.E. (2007) Metabolically Active Microbial Communities in Uranium-Contaminated Subsurface Sediments. FEMS Microbiology Ecology, 59, 95-107.
http://dx.doi.org/10.1111/j.1574-6941.2006.00203.x
[17] Fry, J.C., Horsefield, B., Sykes, R., Cragg, B.A., Heywood, C., Kim, G.T., Mangelsdorf, K., Mildenhall, D.C., Rinna, J., Vieth, A., Zink, K.G., Sass, H., Weightman, A.J. and Parkes, R.J. (2009) Prokaryotic Populations and Activities in an Interbedded Coal Deposit, Including a Previously Buried Section (1.6 2.3 km) above ~150 Ma Basement Rock. Geomicrobiology Journal, 26, 163-178. http://dx.doi.org/10.1080/01490450902724832
[18] Gihring, T.M., Moser, P.D., Lin, L.H., Davidson, M., Onstott, T.C., Morgan, L., Milleson, M., Kieft, T.L., Trimarco, E., Balkwill, D.L. and Dollhopf, M.E. (2006) The Distribution of Microbial Taxa in the Subsurface Water of the Kalahari Shield, South Africa. Geomicrobiology Journal, 23, 415-430.
http://dx.doi.org/10.1080/01490450600875696
[19] Kotelnikova, S. and Pedersen, K. (1997) Evidence for Methanogenic Archaea and Homoacetogenic Bacteria in Deep Granitic Rock Aquifers. FEMS Microbiology Reviews, 20, 339-349.
http://dx.doi.org/10.1111/j.1574-6976.1997.tb00319.x
[20] Bomberg, M., Nyyssonen, M. and Itavaara, M. (2011) Characterization of Olkiluoto Bacterial and Archaeal Communities by RNA Based High-Throughput 454 Pyrosequencing. Posiva Working Report 2011-31, Posivaoy, Eurajoki.
[21] Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A. and Sogin, M.L. (2008) Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoSGenetics, 4, e1000255.
http://dx.doi.org/10.1371/journal.pgen.1000255
[22] Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R, Arrieta, J.M. and Herndl, G.J. (2006) Microbial Diversity in the Deep Sea and the Underexplored “Rare Biosphere”. Proceedings of the National Academy of Science of the United States of America, 103, 12115-12120. http://dx.doi.org/10.1073/pnas.0605127103
[23] Teske, A. and Sorensen, K.B. (2008) Uncultured Archaea in Deep Marine Subsurface Sediments: Have We Caught Them All? The ISME Journal, 2, 3-18. http://dx.doi.org/10.1038/ismej.2007.90
[24] Baker, B.J., Moser, D.P., MacGregor, B.J., Fishbain, S., Wagner, M., Fry, N.K., Jackson, B., Speolstra, N., Loos, S., Takai, K., Sherwood Lollar, B., Fredrickson, J., Balkwill, D., Onstott, T.C., Wimpee, C.F. and Stahl, D.A. (2003) Related Assemblages of Sulphate-Reducing Bacteria Associated with Ultradeep Gold Mines of South Africa and Deep Basalt Aquifers of Washington State. Environmental Microbiology, 5, 267-277.
http://dx.doi.org/10.1046/j.1462-2920.2003.00408.x
[25] Banning, N., Brock, F., Fry, J.C., Parkes, R.J., Hornibrook, E.R.C. and Weightman, A.J. (2005) Investigation of the Methanogen Population Structure and Activity in a Brackish Lake Sediment. Environmental Microbiology, 7, 947-960.
http://dx.doi.org/10.1111/j.1462-2920.2004.00766.x
[26] Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.
[27] Casamayor, E.O., Schafer, H., Ban?eras, L., Pedrós-Alió, C. and Muyzer, G. (2000) Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 66, 499-508.
http://dx.doi.org/10.1128/AEM.66.2.499-508.2000
[28] vonWintzingerode, F., Gobel, U.B. and Stackebrandt, E. (1997) Determination of Microbial Diversity in Environmental Samples: Pitfalls of PCR-Based rRNA Analysis. FEMS Microbiology Reviews, 21, 213-229.
http://dx.doi.org/10.1111/j.1574-6976.1997.tb00351.x
[29] Kan, J., Wang, K. and Chen, F. (2006) Temporal Variation and Detection Limit of an Estuarine Bacterioplankton Community Analyzed by Denaturing Gradient Gel Electrophoresis (DGGE). Aquatic Microbial Ecology, 42, 7-18.
http://dx.doi.org/10.3354/ame042007
[30] Kisand, V. and Wikner, J. (2003) Limited Resolution of 16S rDNA DGGE Caused by Melting Properties and Closely Related DNA Sequences. Journal of Microbiological Methods, 54, 183-191.
http://dx.doi.org/10.1016/S0167-7012(03)00038-1
[31] Sánchez, O., Gasol, J.M., Balagué, V., Massana, R., Mas, J. and Pedrós-Alió, C. (2009) Influence of Primer Mismatch and Microdiversity on DGGE Results: A Case Study with SAR11. Aquatic Microbial Ecology, 54, 211-216.
http://dx.doi.org/10.3354/ame01267
[32] Alonso-Sáez, L., Balagué, V., Sà, E.L., Sánchez, O., González, J.M., Pinhassi, J., Massana, R., Pernthaler, J., PedrósAlió, C. and Gasol, J.M. (2007) Seasonality in Bacterial Diversity in North-West Mediterranean Coastal Waters: Assessment through Clone Libraries, Fingerprinting and FISH. FEMS Microbiology Ecology, 60, 98-112.
http://dx.doi.org/10.1111/j.1574-6941.2006.00276.x
[33] Costa, R., Gotz, M., Mrotzek, N., Lottmann, J., Berg, G. and Smalla, K. (2006) Effects of Site and Plant Species on Rhizosphere Structure Revealed by Molecular Analysis of Microbial Guilds. FEMS Microbiology Ecology, 56, 236-249. http://dx.doi.org/10.1111/j.1574-6941.2005.00026.x
[34] Bano, N., Ruffin, S., Ransom, B. and Hollibaugh, J.T. (2004) Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages. Applied and Environmental Microbiology, 70, 781-789.
http://dx.doi.org/10.1128/AEM.70.2.781-789.2004
[35] Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A. and Reysenbach, A.L. (1999) Population Structure and Phylogenetic Characterization of Marine Benthic Archaea in Deep-Sea Sediments. Applied and Environmental Microbiology, 65, 4375-4384.
[36] Huber, J.A, Morrison, H.G., Huse, S.M., Neal, P.R., Sogin, M.L. and Welsh, D.B.M. (2009) Effect on PCR Amplicon Size on Assessments of Clone Library Microbial Diversity and Community Structure. Environmental Microbiology, 11, 1292-1302. http://dx.doi.org/10.1111/j.1462-2920.2008.01857.x
[37] Cotrelli, M.T. and Kirchman, D.L. (2000) Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence in Situ Hybridization. Applied and Environmental Microbiology, 66, 5116-5122. http://dx.doi.org/10.1128/AEM.66.12.5116-5122.2000
[38] Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. and Backhaus, H. (1996) Sequence Heterogeneities of Genes Encoding 16S rRNAs in Paenibacillus polymyxa Detected by Temperature Gradient Gel Electrophoresis. Journal of Bacteriology, 178, 5636-5643.
[39] Grobkopf, R., Janssen, P.H. and Liesack, W. (1998) Diversity and Structure of the Methanogenic Community in Anoxic Rice Paddy Soil Microcosms as Examined by Cultivation and Direct 16S rRNA Gene Sequence Retrieval. Applied and Environmental Microbiology, 64, 960-969.
[40] Stahl, D.A. and Amann, R. (1991) Development and Application of Nucleic Acid Probes in Bacterial Systematics. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons Ltd., Chichester, 205-248.
[41] Lane, D.J. (1991) 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons Ltd., New York, 115-175.
[42] Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J. and Weber, C.F. (2009) Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75, 7537-7541.
http://dx.doi.org/10.1128/AEM.01541-09
[43] Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J. and Glockner, F.O. (2007) SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Research, 35, 7188-7196. http://dx.doi.org/10.1093/nar/gkm864
[44] Chao, A. (1984) Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 11, 265-270.
[45] Chao, A. and Lee, S.M. (1992) Estimating the Number of Classes via Sample Coverage. Journal of the American Statistical Association, 87, 210-217. http://dx.doi.org/10.1080/01621459.1992.10475194
[46] Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.
[47] Simpson, E.H. (1949) Measurement of Diversity. Nature, 163, 688. http://dx.doi.org/10.1038/163688a0
[48] Guidon, S. and Gascuel, O. (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systems Biology, 52, 696-704. http://dx.doi.org/10.1080/10635150390235520
[49] Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R. and Tiedje, J.M. (2014) Ribosomal Database Project: Data and Tools for High Throughput rRNA Analysis. Nucleic Acids Research, 42, D633-D642. http://dx.doi.org/10.1093/nar/gkt1244
[50] Hammer, O., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, Published Online.
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
[51] Klindworth, A., Preusse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glockner, F.O. (2012) Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Research, 41, e1. http://dx.doi.org/10.1093/nar/gks808
[52] Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J. and Wade, W.G. (1998) Design and Evaluation of Useful Bacterium-Specific PCRE Primers That Amplify Genes Coding for Bacterial 16S rRNA. Applied and Environmental Microbiology, 64, 795-799.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.