Pharmacological Prospects of Oxygenated Abietane-Type Diterpenoids from Taxodium distichum Cones

Abstract

Eight naturally occurring diterpenoids, including 6,7-dehydroroyleanone, taxodal, taxodione, salvinolone, 14-deoxycoleon U, 5,6-dehydrosugiol, sandaracopimaric acid, and xanthoperol were isolated from Taxodium distichum cones and their biological properties evaluated in vitro against six different biological screening targets. Taxodione showed potent activity against a number of different targets, and salvinolone and 14-deoxycoleon U showed remarkable inhibitory activities against prolyl oligopeptidase (POP) and 17α-hydroxylase/C17,20-lyase (CYP17), respectively. These three compounds also showed strong cytotoxic activities against HL60 and K562 human leukemia cells. The structure-activity relationships of these compounds have also been considered. The findings in this study could lead to enhanced pharmacological prospects for the natural abietane-type diterpenoids consisting in conifer cones.

Share and Cite:

Kusumoto, N. , Aburai, N. , Ashitani, T. , Takahashi, K. and Kimura, K. (2014) Pharmacological Prospects of Oxygenated Abietane-Type Diterpenoids from Taxodium distichum Cones. Advances in Biological Chemistry, 4, 109-115. doi: 10.4236/abc.2014.42015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gershenzon, J. and Dudareva, N. (2007) The Function of Terpene Natural Products in the Natural World. Nature Chemical Biology, 3, 408-414.
http://dx.doi.org/10.1038/nchembio.2007.5
[2] Kusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K. and Takahashi, K. (2009) Antitermitic Activities of Abietane-Type Diterpenes from Taxodium distichum Cones. Journal of Chemical Ecology, 35, 635-642.
http://dx.doi.org/10.1007/s10886-009-9646-0
[3] Kusumoto, N., Ashitani, T., Murayama, T., Ogiyama, K. and Takahashi, K. (2010) Antifungal Abietane-Type Diterpenes from the Cones of Taxodium distichum Rich. Journal of Chemical Ecology, 36, 1381-1386.
http://dx.doi.org/10.1007/s10886-010-9875-2
[4] Kupchan, S.M., Karim, A. and Marcks, C. (1969) Tumor Inhibitors. XLVIII. Taxodione and Taxodone, Two Novel Diterpenoid Quinone Methide Tumor Inhibitors from Taxodium distichum. Journal of Organic Chemistry, 34, 3912-3919.
http://dx.doi.org/10.1021/jo01264a036
[5] Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. and Tada, M. (2001) Synthesis of Variously Oxidized Abietane Diterpenes and Their Antibacterial Activities against MRSA and VRE. Bioorganic & Medicinal Chemistry, 9, 347-356.
http://dx.doi.org/10.1016/S0968-0896(00)00253-4
[6] Kofujita, H., Ota, M., Takahashi, K., Kawai, Y. and Hayashi, Y. (2002) A Diterpene Quinone from the Bark of Cryptomeria Japonica. Phytochemistry, 61, 895-898.
http://dx.doi.org/10.1016/S0031-9422(02)00352-7
[7] Marques, C.G., Rijo, P., Simões, M.F., Duarte, M.A. and Rodriguez, B. (2006) Abietanes from Plectranthus grandidentatus and P. hereroensis against Methicillin- and Vancomycin-Resistant Bacteria. Phytomedicine, 13, 267-271.
http://dx.doi.org/10.1016/j.phymed.2005.06.002
[8] Moujir, L. and Gutierrez-Navarro, A.M. (1996) Bioactive Diterpenoids Isolated from Salvia mellifera. Phytotherapy Research, 10, 172-174.
http://dx.doi.org/10.1002/(SICI)1099-1573(199603)10:2<172::AID-PTR797>3.0.CO;2-Q
[9] Fronza, M., Lamy, E., Günther, S., Heinzmann, B., Laufer, S. and Merfort, I. (2012) Abietane Diterpenes Induce Cytotoxic Effects in Human Pancreatic Cancer Cell Line MIA PaCa-2 through Different Modes of Action. Phytochemistry, 78, 107-119.
http://dx.doi.org/10.1016/j.phytochem.2012.02.015
[10] Wang, W.-X., Xiong, J., Tang, Y., Zhu, J.-J., Li, M., Zhao, Y., Yang, G.-X., Xia, G. and Hu, J.-F. (2013) Rearranged Abietane Diterpenoids from the Roots of Clerodendrum trichotomum and Their Cytotoxicities against Human Tumor Cells. Phytochemistry, 89, 89-95.
http://dx.doi.org/10.1016/j.phytochem.2013.01.008
[11] Burmistrova, O., Simões, M.F., Rijo, P., Quintana, J., Bermejo, J. and Estévez, F. (2013) Antiproliferative Activity of Abietane Diterpenoids against Human Tumor Cells. Journal of Natural Products, 76, 1413-1423.
http://dx.doi.org/10.1021/np400172k
[12] Kimura, K., Ikeda, Y., Kagami, S. and Yoshihama, M. (1998) Selective Inhibition of the Bacterial Peptidoglycan Biosynthesis by the New Types of Liposidomycins. The Journal of Antibiotics, 51, 1099-1104.
http://dx.doi.org/10.7164/antibiotics.51.1099
[13] Kimura, K., Itakura, Y., Goto, R., Tojima, M., Egawa, N. and Yoshihama, M. (2007) Inhibition of 17α-Hydroxylase/ C17,20-Lyase (CYP17) from Rat Testis by Green Tea Catechins and Black Tea Theaflavins. Bioscience, Biotechnology, and Biochemistry, 71, 2325-2328.
http://dx.doi.org/10.1271/bbb.70258
[14] Kimura, K., Kanou, F., Takahashi, H., Esumi, Y., Uramoto, M. and Yoshihama, M. (1997) Propeptin, a New Inhibitor of Prolyl Endopeptidase Produced by Microbispora I. Fermentation, Isolation and Biological Properties. The Journal of Antibiotics, 50, 373-378.
http://dx.doi.org/10.7164/antibiotics.50.373
[15] Ogasawara, Y., Yoshida, J., Shiono, Y., Miyakawa, T. and Kimura, K. (2008) New Eremophilane Sesquiterpenoid Compounds, Eremoxylarins A and B Directly Inhibit Calcineurin in a Manner Independent of Immunophilin. The Journal of Antibiotics, 61, 496-502.
http://dx.doi.org/10.1038/ja.2008.66
[16] Aburai, N., Yoshida, M., Ohnishi, M. and Kimura, K. (2010) Sanguinarine as a Potent and Specific Inhibitor of Protein Phosphatase 2C in Vitro and Induces Apoptosis via Phosphorylation of p38 in HL60 Cells. Bioscience, Biotechnology, and Biochemistry, 74, 548-552.
http://dx.doi.org/10.1271/bbb.90735
[17] Aburai, N., Yoshida, M., Ohnishi, M. and Kimura, K. (2010) Pisiferdiol and Pisiferic Acid Isolated from Chamaecyparis pisifera Activate Protein Phosphatase 2C in Vitro and Induce Caspase-3/7-Dependent Apoptosis via Dephosphorylation of Bad in HL60 Cells. Phytomedicine, 17, 782-788. http://dx.doi.org/10.1016/j.phymed.2009.12.015
[18] Shiono, Y., Motoki, S., Koseki, T., Murayama, T., Tojima, M. and Kimura, K. (2009) Isopimarane Diterpene Glycosides, Apoptosis Inducers, Obtained from Fruiting Bodies of the Ascomycete Xylaria polymorpha. Phytochemistry, 70, 935-939.
http://dx.doi.org/10.1016/j.phytochem.2009.03.023
[19] Kimura, K., Minamikawa, Y., Ogasawara, Y., Yoshida, J., Saitoh , K., Shinden, H., Ye, Y.-Q., Takahashi, S., Miyakawa, T. and Koshino, H. (2012) Kujigamberol, a New Dinorlabdane Diterpenoid from 85 Million Years Old Kuji Amber Using a Biotechnological Assay. Fitoterapia, 83, 907-912.
http://dx.doi.org/10.1016/j.fitote.2012.03.024
[20] Aburai, N., Yoshida, J., Kobayashi, M., Mizunuma, M., Ohnishi, M. and Kimura, K. (2013) Pisiferdiol Restores the Growth of a Mutant Yeast Suffering from Hyperactivated Ca2+ Signaling through Calcineurin Inhibition. FEMS Yeast Research, 13, 16-22.
http://dx.doi.org/10.1111/1567-1364.12003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.