Share This Article:

Galilean-Like Transformation Allowed by General Covariance and Consistent with Special Relativity

Full-Text HTML XML Download Download as PDF (Size:358KB) PP. 230-243
DOI: 10.4236/jmp.2014.55033    4,910 Downloads   5,973 Views   Citations

ABSTRACT

As shown earlier, a linear transformation with the same form for the spatial coordinates as the Lorentz transformation (LT), and that allows for time dilation, but leaves simultaneity invariant instead of the one-way speed of light, predicts the same results as the LT for the usual tests of special relativity. Such a transformation is allowed by general covariance. A complementarity between the invariance of the one-way speed of light and the invariance of simultaneity is discussed. Using this transformation, interpreted as involving external synchronization, it is shown that two frames moving uniformly with equal and opposite velocities, v and –v relative to a third inertial frame, in which clocks are synchronized so that the one-way speed of light is c, can be related by a Galilean-like transformation with a relative velocity 2v/(1-(v/c)2).These transformations do not form a group, hence the term “pseudo-Galilean” is used to distinguish them from the Galilean transformations. An analogy with the Sagnac effect is discussed, and consistency with the LT for stellar aberration, and the Doppler effect is shown. Implication of the above complementarity for the possible unification of quantum theory and gravitation is briefly discussed, as well as the inferred physical significance of general covariance.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Tangherlini, F. (2014) Galilean-Like Transformation Allowed by General Covariance and Consistent with Special Relativity. Journal of Modern Physics, 5, 230-243. doi: 10.4236/jmp.2014.55033.

References

[1] Tangherlini, F.R. (1958) The Velocity of Light in Uniformly Moving Frames. Ph.D. Dissertation, Stanford University, Stanford, Published in: (2009) Abraham Zelmanov Journal, 2, 44-110.
http://zelmanov.ptep-online.com/papers/zj-2009
[2] Stachel, J. (1989) Einstein’s Search for General Covariance. In: Howard, D. and Stachel, J., Eds., Einstein and the History of General Relativity, Birkhauser, Boston, 63-100.
[3] Pauli, W. (1958) Theory of Relativity. Pergamon Press, Oxford, 149-150.
[4] Rindler, W. (1969) Essential Relativity. Van Nostrand Reinhold, Co., 196-197.
[5] Weinberg, S. (1972) Gravitation and Cosmology. John Wiley & Sons, Inc., Hoboken, 91-93.
[6] Tangherlini, F.R. (2008) Physica Scripta, 77, Article ID: 065008 (9 pages).
[7] Feinberg, G. (1967) Physical Review, 159, 1089-1105. http://dx.doi.org/10.1103/PhysRev.159.1089
[8] Schmidt, H. (1958) Zeitschrift für Physik, 151, 365-374. http://dx.doi.org/10.1007/BF01338390
[9] Schmidt, H. (1958) Zeitschrift für Physik, 151, 408-420. http://dx.doi.org/10.1007/BF01337942
[10] Bilaniuk, O.M.P., Deshpande, V.K. and Sudarshan, E.C.G. (1962) American Journal of Physics, 30, 718-723.
http://dx.doi.org/10.1119/1.1941773
[11] Tanaka, S. (1960) Progress of Theoretical Physics, 24, 171-200. http://dx.doi.org/10.1143/PTP.24.171
[12] Terletski, Ya. (1961) Soviet Physics-Doklady, 5, 782-785.
[13] Recami, E. (1986) La Rivista Del Nuovo Cimento Series 3, 9, 1-178. http://dx.doi.org/10.1007/BF02724327
[14] Froman, O. (1994) Archive Hist. Exact Sciences, 48, 373-373. http://dx.doi.org/10.1007/BF00375087
[15] Tangherlini, F.R. (1994) Il Nuovo Cimento B Series 11, 109, 929-951. http://dx.doi.org/10.1007/BF02726141
[16] Tangherlini, F.R. (1961) Supplemento del Nuovo Cimento, 20, 1-86; Chinese transl.: Zhu, P.Y. (1963) Shanghai Science and Technology Press, Shanghai.
[17] Mansouri, R. and Sexl, R.U. (1977) General Relativity and Gravitation, 8, 497-513; 515-524; 809-814.
http://dx.doi.org/10.1007/BF00762634
[18] Chang, T. (1979) Physics Letters A, 70, 1-2. http://dx.doi.org/10.1016/0375-9601(79)90309-8
[19] Tangherlini, F.R. (2009) Abraham Zelmanov Journal, 2, 111-120.
[20] Sjodin, T. (1979) Il Nuovo Cimento B Series 11, 114, 229-246. http://dx.doi.org/10.1007/BF02743433
[21] Cavalleri. G. and Spinelli, G. (1983) Foundations of Physics, 13, 1221-1229. http://dx.doi.org/10.1007/BF00727994
[22] Spavieri, G. (1986) Physical Review A, 34, 1708-1713. http://dx.doi.org/10.1103/PhysRevA.34.1708
[23] Selleri, F. (1996) Foundations of Physics, 26, 641-664. http://dx.doi.org/10.1007/BF02058237
[24] Selleri, F. (2005) Foundations of Physics Letters, 18, 325-339. http://dx.doi.org/10.1007/s10702-005-7123-8
[25] Cavalleri, G. and Tonni, E. (1998) Physical Review E, 57, 3478-3484. http://dx.doi.org/10.1103/PhysRevE.57.3478
[26] Tonni, E. (1999) Nuovo Cimento della Societa Italiana di Fisica [Sezione] B, 114, 561-568.
[27] Cavalleri, G., Tonni, E. and Barbareo, F. (2013) Physical Review E, 87, Article ID: 043202 (13 pages).
[28] Malykin, G.B. and Malykin, E.G. (2009) Abraham Zelmanov Journal, 2, 121-124.
[29] Eagle, A. (1938) Philosophical Magazine, 26, 410-414.
[30] Eagle, A. (1939) Philosophical Magazine, 28, 592-595.
[31] Eagle, A. (1939) Philosophical Magazine Series 6, 28, 694-701.
[32] Tangherlini, F.R. (2009) Abraham Zelmanov Journal, 2, 29-43.
[33] Reichenbach, H. (1928) Philosphie der Raum-Zeit-Lehre. Walter Gruyter and Co., Berlin; English Translation, Reichenbach, M. and Freud, J. (1958) The Philosophy of Space and Time. Dover, New York, 123-129.
[34] Anderson, R., Vetharaniam, J. and Stedman, G.E. (1998) Physics Reports, 295, 93-180.
http://dx.doi.org/10.1016/S0370-1573(97)00051-3
[35] Smoot, G.F., Bennett, C.L., Kogut, A., et al. (1992) Astrophysics Journal, 396, L1-L5.
http://dx.doi.org/10.1086/186504
[36] Conklin, E.K. (1969) Nature, 122, 971-972.
[37] Henry, P.S. (1971) Nature, 231, 516-518. http://dx.doi.org/10.1038/231516a0
[38] Wolf, P. and Petit, G. (1997) Physical Review A, 56, 4405-4409. http://dx.doi.org/10.1103/PhysRevA.56.4405
[39] Sagnac, G. (1913) Comptes Rendus, 157, 708-710.
[40] Sagnac, G. (1913) Comptes Rendus, 157, 1410-1413.
[41] Post, E.J. (1967) Reviews of Modern Physics, 39, 475-481. http://dx.doi.org/10.1103/RevModPhys.39.475
[42] Anderson, R., Bilger, H.R. and Stedman, G.E. (1994) American Journal of Physics, 62, 975-985.
http://dx.doi.org/10.1119/1.17656
[43] Malykin, G.B. (2000) Physics-Uspekhi, 43, 1229-1252. http://dx.doi.org/10.1070/PU2000v043n12ABEH000830
[44] Ghosal, S.K., Raychaudhuri, B., Chowdhury, A.K. and Sarker, M. (2004) Foundations of Physics Letters, 17, 457-477.
http://dx.doi.org/10.1023/B:FOPL.0000042698.27763.0b
[45] Harzer, P. (1914) Astronomische Nachrichten, 198, 377-392.
[46] Harress, F. (1911) Die Geschwindigkeit des Lichtes in bewegten Korpern. Ph.D. Dissertation, Jena University, Jena, unpublished.
[47] Arditty, H.J. and Lefèvre, H.C. (1981) Optics Letters, 6, 401-403. http://dx.doi.org/10.1364/OL.6.000401
[48] Bridgman, P.W. (1962) A Sophisticates Primer of Relativity. Wesleyan University Press, Middletown, 92-93.
[49] Puccini, G.D. and Selleri, F. (2002) Nuovo Cimento B, 117, 283-293.
[50] Einstein, A. (1920) Aether und Relativitatstheorie. Springer, Berlin; English Translation: Harris, A. (1953) In: Essays in Science. Philosophical Library, New York, 98-111.
[51] Bohr, N. (1961) Atomic Physics and Human Knowledge. Science Editions, New York, 67-82.
[52] Kretschmann, E. (1917) Annalen der Physik, Leipzig, 53, 575-614.
[53] Einstein, A. (1918) Annalen der Physik, Leipzig, 55, 241-244. http://dx.doi.org/10.1002/andp.19183600402
[54] Anderson, J.L. (1967) Principles of Relativity Physics. Academic Press, New York, 338-340.
[55] Tangherlini, F.R. (1970) Lettere al NuovoCimento, Series I, 2, 88-92.
[56] Tangherlini, F.R. (2011) Bulletin of the American Physical Society, 56, 59.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.