Share This Article:

Identification of Plant Remains in Underwater Archaeological Areas by Morphological Analysis and DNA Barcoding

Full-Text HTML Download Download as PDF (Size:5192KB) PP. 240-248
DOI: 10.4236/aa.2013.34034    4,462 Downloads   9,893 Views   Citations


DNA barcode technique has only recently been applied to archaeobotanical studies. In fact, in association with morphological, scanning electron and optical microscopic analyses, these specific methods allow researcher to scientifically classify antique flora samples. Therefore, this project wants to improve, to encourage and spread further use of this protocol and to highlight the potentialities of the molecular biology and microscopy related to botanical fossils. In conclusion, ancient Olea europaea L. and Crataegus monogyna Jacq. seeds, a Pinus sp. pollen cone, a Quercus petraea (Mattuschka) Liebl. acorn, animal fibers and gymnosperm woody fragments, found in a 1st Century BC sunken Dressel 1B amphora, have clearly been identified, in order to enhance knowledge about Central Italy past human activity and environment. This research has also demonstrated the applicability of this scientific approach on specimens derived from underwater archaeological site.

Cite this paper

Gismondi, A. , Leonardi, D. , Enei, F. & Canini, A. (2013). Identification of Plant Remains in Underwater Archaeological Areas by Morphological Analysis and DNA Barcoding. Advances in Anthropology, 3, 240-248. doi: 10.4236/aa.2013.34034.


[1] Bailey, G. N., & Flemming, N. C. (2008). Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews, 27, 2153-2165.
[2] Banning, E. B. (2002). Analysing plant remains. The archaeologist’s laboratory. The analysis of archaeological data. Interdisciplinary contributions to archaeology. Springer.
[3] Barthlott, W. (1981). Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects. Nordic Journal of Botany, 1, 345-355.
[4] Carrión, Y., Ntinoub, M., & Badalc, E. (2010). Olea europaea L. in the north Mediterranean basin during the Pleniglacial and the EarlyMiddle Holocene. Quaternary Science Reviews, 29, 952-968.
[5] Chase, M. W., Cowan, R. S., Hollingsworth, P. M., et al. (2007). A proposal for a standardized protocol to barcode all land plants. Taxon, 56, 295-299.
[6] Claesson, S. (2011). The value and valuation of maritime cultural heritage. International Journal of Cultural Property, 18, 61-80.
[7] Coolen, M. J. L., & Gibson, A. E. (2009). Ancient DNA in lake sediment records. Science Highlights: Paleolimnology, 17, 104-106.
[8] Dietsch, M. F. (1996). Gathered fruits and cultivated plants at Bercy (Paris), a Neolithic village in a fluvial context. Vegetation History and Archaeobotany, 5, 89-97.
[9] Edge, C., & Gibbins, D. (1988). Underwater discovery of Roman surgical equipment. British Medical Journal, 297, 1645-1646.
[10] Enei, F. (2008). Pyrgi sommersa. Ricognizioni archeologiche subacquee nel porto dell’antica Caere, S. Marinella. Edito dal Comune di S. Marinella/Museo Civico, Italy.
[11] Florian, M. L. E., Kronkright, D. P., & Norton, R. E. (1990). Identification of plant and animal materials in artifacts. Greenville, NC: Edward Brothers, Inc. 49 (J. Paul Getty Trust).
[12] Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O., & Canini, A. (2012). Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcode. Comptes Rendus Biologies, 335, 472-479.
[13] Goodway, M. (1987). Fiber identification in practice. Journal of the American Institute for Conservation, 26, 27-44.
[14] Gorham, L. D., & Bryant, V. M. (2001). Pollen, phytoliths, and other microscopic plant remains in underwater archaeology. International Journal of Nautical Archaeology, 30, 282-298.
[15] Gould, B. A., León, B., Buffen, A. M., & Thompson, L. G. (2010). Evidence of a high-Andean, mid-Holocene plant community: An ancient DNA analysis of glacially preserved remains. American Journal of Botany, 97, 1579-1584.
[16] Grasso, A. M., & Fiorentino, G. (2009). Studi archeobotanici per l’Italia medievale: Una sintesi. In G. Volpe, P. Favia (a cura di), & V. Atti del Congresso Nazionale di Archeologia Medievale, 30 settembre-3 ottobre 2009 Foggia-Manfredonia (pp. 120-126). All’insegna del Giglio: Firenze,
[17] Groningen Institute of Archaeology (University of Groningen) & The Deutsches Archaologisches Institut (Berlin) (2006). The digital plant atlas.
http:// page= browse&family = Rosaceae
[18] Group CPW (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences USA, 106, 12794-12797.
[19] Gugerli, F., Parducci, L., & Petit, R. J. (2005). Ancient plant DNA: Review and prospects. New Phytologist, 166, 409-418.
[20] Han, Y. J., Cho, Y. J., Lambert, W. E., & Bragg, C. K. (1998). Identification and measurement of convolutions in cotton fiber using image analysis. Artificial Intelligence Review, 12, 201-211.
[21] Hansson, M. C., & Foley, B. P. (2008). Ancient DNA fragments inside classical Greek amphoras reveal cargo of 2400-year-old shipwreck. Journal of Archaeological Science, 35, 1169-1176.
[22] Heinz, C., & Barbaza, M. (1998). Environmental changes during the late glacial and post-glacial in the central Pyrenees (France): New charcoal analysis and archaeological data. Review of Palaeobotany and Palynology, 104, 1-17.
[23] Krakhmalev, V. A., & Paiziev, A. A. (2006). Spiral structures of cotton fiber. Cellulose, 13, 45-52.
[24] Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the noncoding trnH-psbA spacer region. PLoS One, 6, e508.
[25] Kress, W. J., & Erickson, D. L. (2008). DNA barcodes: Genes, genomics and bioinformatics. Proceedings of the National Academy of Sciences USA, 105, 2761-2762.
[26] Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences USA, 102, 8369-8374.
[27] Liepelt, S., Sperisen, C., Deguilloux, M. F., Petit, R. J., Kissling, R., Spencer, M., De Beaulieu, J. L., Taberlet, P., Gielly, L., & Ziegenhagen, B. (2006). Authenticated DNA from ancient wood remains. Annals of Botany, 98, 1107-1111.
[28] Liphschitz, N., Gophna, R., Hartman, M., & Biger, G. (1991). The beginning of olive (Olea europaea) cultivation in the old world: A reassessment. Journal of Archaeological Science, 18, 441-453.
[29] Manen, J. F., Boubyb, L., Dalnokic, O., Marinvalb, P., Turgayd, M., & Schlumbaumd, A. (2003). Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal of Archaeological Science, 30, 721-729.
[30] Marota, I., Basile, C., Ubaldi, M., & Rollo, F. (2002). DNA decay rate in papyri and human remains from Egyptian archaeological sites. American Journal of Physical Anthropology, 117, 310-318.
[31] Milanesi, C., Sorbi, A., Paolucci, E., Antonucci, F., Menesatti, P., Costa, C., Pallottino, F., Vignani, R., Cimato, A., Ciacci, A., & Mauro, C. (2011). Pomology observations, morphometric analysis, ultrastructural study and allelic profiles of “olivastra Seggianese” endocarps from ancient olive trees (Olea europaea L.). Comptes Rendus Biologies, 334, 39-49.
[32] Minnis, P. E. (1987). Identification of wood from archaeological sites in the american southwest. I. Keys for gymnosperms. Journal of Archaeological Science, 14, 121-131.
[33] Palmer, S. A., Smith, O., & Allaby, R. G. (2012). The blossoming of plant archaeogenetics. Annals of Anatomy, 194, 146-156.
[34] Pignatti, S. (1982). Flora d’Italia. Edagricole Editore, I, 113-120.
[35] Poinar, H. N. (2002). The genetic secrets some fossils hold. Accounts of Chemical Research, 35, 676-684.
[36] Pruvost, M., Schwarz, R., Correia, V. B., Champlot, S., Braguier, S., Morel, N., Fernandez-Jalvo, Y., Grange, T., & Geigl, E. M. (2007). Freshly excavated fossil bones are best for amplification of ancient DNA. Proceedings of the National Academy of Sciences USA, 104, 739-744.
[37] Quaglierini, C. (2012). Chimica delle fibre tessili. Seconda Edizione. Scienze Zanichelli Editore.
[38] Schlumbaum, A., Tensen, M., & Jaenicke-Després, V. (2008). Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany, 17, 233-244.
[39] Schlumbaum, A., Van Glabeke, S., & Roland-Ruiz, I. (2012). Towards the onset of fruit tree growing north of the Alps: Ancient DNA from waterlogged apple (Malus sp.) seed fragments. Annals of Anatomy, 194, 157-162.
[40] Seberg, O., & Petersen, G. (2009). How many loci does it take to DNA barcode a crocus? PLoS One, 4, e4598.
[41] Willcox, G. H. (1977). Exotic plants from roman waterlogged sites in London. Journal of Archaeological Science, 4, 269-282.
[42] Willerslev, E., & Cooper, A. (2004). Ancient DNA. Proceedings of the Royal Society B, 272, 3-16.
[43] Yaman, B. (2011). Anatomy of archaeological wood charcoals from Yenibademli Mound (Imbros), Western Turkey. Mediterranean Archaeology and Archaeometry, 11, 33-39.
[44] Yang, Y. D., & Watt, K. (2005). Contamination controls when preparing archaeological remains for ancient DNA analysis. Journal of Archaeological Science, 32, 331-336.
[45] Yoccoz, N. G., Brathen, K. A., Gielly, L., Haile, J., Edwards, M. E., GOSLAR, T., et al. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21, 3647-3655.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.