Share This Article:

New Evidence, Conditions, Instruments & Experiments for Gravitational Theories

Full-Text HTML XML Download Download as PDF (Size:2536KB) PP. 183-196
DOI: 10.4236/jmp.2013.48A018    5,313 Downloads   8,832 Views   Citations

ABSTRACT

Two significant findings compel a rethink of physical theories. First, using a 7-billion-year-old gamma-ray burst, Nemiroff (2012) showed that quantum foam could not exists. And second, Solomon (2011) showed that gravitational acceleration is not associated with the gravitating mass, that gravitational acceleration g is determined solely by τ the change in time dilation over a specific height multiplied by c2 or g = τc2. Seeking consistency with Special Theory of Relativity, as means to initiate this rethink, this paper examines 12 inconsistencies in physical theories that manifest from empirical data. The purpose of this examination is to identify how gravitational theories need to change or be explored, to eliminate these 12 inconsistencies. It is then proposed that spacetime is much more sophisticated than just a 4-dimensional continuum. And, that the Universe consists of at least two layers or “kenos” (Greek for vacuous), the 4-dimensional kenos, spacetime (x, y, z, t) and the 3-dimensional kenos, subspace (x, y, z) that are joined at the space coordinates (x, y, z). This explains why electromagnetic waves are transverse, and how probabilities are implemented in Nature. This paper concludes by proposing two new instruments and one test, to facilitate research into gravitational fields, the new torsion-, tension- and stress-free near field gravity probe, the gravity wave telescope, and a non-locality test.

Cite this paper

B. Solomon, "New Evidence, Conditions, Instruments & Experiments for Gravitational Theories," Journal of Modern Physics, Vol. 4 No. 8A, 2013, pp. 183-196. doi: 10.4236/jmp.2013.48A018.

References

[1] R. Nemiroff, “Bounds on Spectral Dispersion from Fermi-Detected Gamma Ray Bursts,” Physical Review Letters, Vol. 108, No. 23, 2012, Article ID: 231103. doi:10.1103/PhysRevLett.108.231103
[2] B. T. Solomon, “Gravitational Acceleration without Mass and Noninertia Fields,” Physics Essays, Vol. 24, No. 3, 2011, pp. 327-337. doi:10.4006/1.3595113
[3] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman and Company, New York, 1973.
[4] B. T. Solomon, “An Approach to Gravity Modification as a Propulsion Technology,” The Proceedings of the Space, Propulsion & Energy Sciences International Forum (SPE-SIF-09), AIP Conference Proceedings 1103, Melville, 2009, pp. 317-325. http://scitation.aip.org/proceedings/confproceed/1103.jsp
[5] E. Podkletnov, “Weak Gravitational Shielding Properties of Composite Bulk YBa2Cu3O7-x Superconductor below 70 K under e.m. Field,” 1997. arXiv:cond-mat/9701074
[6] E. Podkletnov and R. Nieminen, “A Possibility of Gravitational Force Shielding by Bulk YBa2Cu3O7-x Superconductor,” Physica C, Vol. 203, No. 3-4, 1992, pp. 441-444. doi:10.1016/0921-4534(92)90055-H
[7] B. T. Solomon, “Reverse Engineering Podkletnov’s Experiments,” The Proceedings of the Space, Propulsion & Energy Sciences International Forum (SPESIF-11), College Park, 15-17 March 2011. http://www.sciencedirect.com/science/journal/18753892/20
[8] R. C. Woods, S. G. Cooke, J. Helme and C. H. Caldwell, “Gravity Modification by High-Temperature Supercondoctors,” The Proceedings of the 37th AIAA/ASME/SAE/ ASSEE Joint Propulsion Conference & Exhibit, Salt Lake City, 8-11 July 2001, pp. 1-10.
[9] G. Hathaway, B. Cleveland and Y. Bao, “Gravity Modification Experiments Using a Rotating Superconducting Disk and Radio Frequency Fields,” Physica C, Vol. 385, No. 4, 2003, pp. 488-500.
[10] H. Bondi, “Negative Mass in General Relativity,” Reviews of Modern Physics, Vol. 29, No. 3, 1957, pp. 423-428. doi:10.1103/RevModPhys.29.423
[11] B. T. Solomon, “An Introduction to Gravity Modification: A Guide to Using Laithwaite’s and Podkletnov’s Experiments and the Physics of Forces for Empirical Results,” Universal Publishers, Boca Raton, 2012. http://www.universal-publishers.com/book.php?method=ISBN&book=1612330894
[12] W. C. Elmore and M. A. Heald, “Physics of Waves,” Dover Publications, New York, 1985.
[13] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, “A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propogation,” Nature Photonics, Vol. 2, 2008, No. 8, pp. 496-500.
[14] B. T. Solomon, “Non-Gaussian Photon Probability Distributions,” The Proceedings of the Space, Propulsion & Energy Sciences International Forum (SPESIF-10), AIP Conference Proceedings 1208, Melville, 2010, pp. 317-325. http://scitation.aip.org/proceedings/confproceed/1208.jsp
[15] B. T. Solomon, “Non-Gaussian Radiation Shielding,” The Proceedings of the 100 Year Starship Study Public Symposium (100YSS), Orlando, 30 September-2 October, 2011.
[16] E. S. Reich, “G-Whizzes Disagree over Gravity,” Nature, Vol. 466, 2010, p. 1030. doi:10.1038/4661030a
[17] J. H. Gundlach and S. M. Merkowitz, “Measurement of Newton’s Constant Using a Torsion Balance with Angular Acceleration Feedback,” Physical Review Letters, Vol. 85, No. 14, 2000, pp. 2869-2872. doi:10.1103/PhysRevLett.85.2869
[18] H. V. Parks and J. E. Faller, “A Simple Pendulum Determination of the Gravitational Constant,” Physical Review Letters, Vol. 105, 2010, Article ID: 110801.
[19] J. Luo, Q. Liu, L.-C. Tu, C.-G. Shao, L.-X. Liu, S.-Q. Yang, Q. Li and Y.-T. Zhang, “Determination of the Newtonian Gravitational Constant G with Time-of-Swing Method,” Physical Review Letters, Vol. 102, No. 24, 2009, Article ID: 240801. doi:10.1103/PhysRevLett.102.240801
[20] St. Schlamminger, E. Holzschuh, W. Kündig, F. Nolting, R. E. Pixley, J. Schurr and U. Straumann, “Measurement of Newton’s Gravitational Constant,” Physical Review D, Vol. 74, No. 8, 2006, Article ID: 082001. doi:10.1103/PhysRevD.74.082001
[21] M. D. Eisaman, E. A. Goldschmidt, J. Chen, J. Fan and A. Migdall, “Experimental Test of Nonlocal Realism Using a Fiber-Based Source of Polarization-Entangled Photon Pairs,” Physical Review A, Vol. 77, No. 3, 2008, Article ID: 032339. doi:10.1103/PhysRevA.77.032339
[22] J. C. Howell, R. S. Bennink, S. J. Bentley and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Physical Review Letters, Vol. 92, No. 21, 2004, Article ID: 210403. doi:10.1103/PhysRevLett.92.210403
[23] A. Aspect, J. Dalibard and G. Roger, “Experimental Test of Bell’s Inequalities Using Time-Varying Analyzer,” Physical Review Letters, Vol. 49, No. 25, 1982, pp. 1804-1807. doi:10.1103/PhysRevLett.49.1804
[24] E. Yao, S. Franke-Arnold, J. Courtial and M. J. Padgett, “Observation of Quantum Entanglement Using Spatial Light Modulators,” Optics Express, Vol. 14, No. 26, 2006, p. 13089. doi:10.1364/OE.14.013089
[25] T. Yarnall, A. F. Abouraddy, B. E. A. Saleh and M. C. Teich, “Experimental Violation of Bell’s Inequality in Spatial-Parity Space,” Physical Review Letters, Vol. 99, No. 17, 2007, Article ID: 170408. doi:10.1103/PhysRevLett.99.170408
[26] J. Leach, B. Jack, J. Romero, M. Rirsch-Marte, R. W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold and M. J. Padgett, “Violation of a Bell inequality in Two-Dimensional Orbital Angular Momentum Stat-Spaces,” Optics Express, Vol. 17, No. 10, 2009, pp. 8287-8293. doi:10.1364/OE.17.008287
[27] W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden and N. Gisin, “Experimental Demonstration of Quantum-Correlations over More than 10 Kilometers,” Physical Review A, Vol. 57, No. 5, 1998, pp. 3229-3232. doi:10.1103/PhysRevA.57.3229

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.