Technology and Applications of Microbial Biosensor

Abstract

A microbial biosensor is an analytical device that immobilizes microorganisms onto a transducer for the detection of target analytes. With the development of nanotechnology, nanomaterials have been used to achieve better immobilization for developing a more reliable and selective microbial biosensor. Also, significant progress has been made in the development of transducer technology leading to higher sensitivity. Microbial biosensors have become one of the most useful means of monitoring environmental, food and clinical samples. In this review, we focus on the newly developed technologies and applications of microbial biosensors in recent years.

Share and Cite:

Dai, C. and Choi, S. (2013) Technology and Applications of Microbial Biosensor. Open Journal of Applied Biosensor, 2, 83-93. doi: 10.4236/ojab.2013.23011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. P. Mohanty and E. Kougianos, “Biosensosrs: A Tutorial Review,” IEEE Potentials, Vol. 25, No. 2, 2006, pp. 35-40. doi:10.1109/MP.2006.1649009
[2] Y. Lei, W. Chen and A. Mulchandani, “Microbial Biosensors,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 200-210. doi:10.1016/j.aca.2005.11.065
[3] S. F. D’Souza, “Microbial Biosensors,” Biosensor and Bioelectronics, Vol. 16, No. 6, 2001, pp. 337-353. doi:10.1016/S0956-5663(01)00125-7
[4] S. Chauhan, V. Rai and H. B. Singh, “Biosensors,” Biosensor, 2004, pp. 33-44.
[5] L. Su, W. Jia, C. Hou and Y. Lei, “Microbial Biosensors: A Review,” Biosensors and Bioelectronics, Vol. 26, No. 5, 2011, pp. 1788-1799. doi:10.1016/j.bios.2010.09.005
[6] S. F. D’Souza, “Immobilization and Stabilization of Biomaterials for Biosensor Applications,” Applied Biochemistry and Biotechnology, Vol. 96, No. 1-3, 2001, pp. 225- 238. doi:10.1385/ABAB:96:1-3:225
[7] S. Tuncagil, C. Ozdemir, D. Demirkol, S. Timur and L. Toppare, “Gold Nanoparticle Modified Conducting Polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) Benzena- mine for Potential Use as a Biosensing Material,” Food Chmeistry, Vol. 127, No. 3, 2011, pp. 1317-1322. doi:10.1016/j.foodchem.2011.01.089
[8] S. Choi and J. Chae, “Optimal Biofilm Formation and Power Generation in a Micro-Sized Microbial Fuel Cell (MFC),” Sensors & Actuators A: Physical, Vol. 195, 2012, pp. 206-212.
[9] Z. W. Du, H. R. Li and T. Y. Gu, “A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy,” Biotechnology Advances, Vol. 25, No. 5, 2007, pp. 464-482. doi:10.1016/j.biotechadv.2007.05.004
[10] K. R. Rogers, “Recent Advances in Biosensor Techniques for Environmental Monitoring,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 222-231. doi:10.1016/j.aca.2005.12.067
[11] S. M. Steinberg, E. J. Poziomek, W. H. Engelmann and K. R. Rogers, “A Review of Environmental Applications of Bioluminescence Measurements,” Chemosphere, Vol. 30, No. 11, 1995, pp. 2155-2197. doi:10.1016/0045-6535(95)00087-O
[12] S. Belkin, “Microbial Whole-Cell Sensing Systems of Environmental Pollutants,” Current Opinion in Microbiology, Vol. 6, No. 3, 2003, pp. 206-212. doi:10.1016/S1369-5274(03)00059-6
[13] P. Arora, A. Sindhu, N. Dilbaghi and A. Chaudhury, “Biosensors as Innovative Tools for the Detection of Food Borne Pathogens,” Biosensors and Bioelectronics, Vol. 28, No. 1, 2011, pp. 1-12. doi:10.1016/j.bios.2011.06.002
[14] B. D. Malhotra and A. Chaubey, “Biosensors for Clinical Diagnostics Industry,” Sensors & Actuators, Vol. 91, No. 1-3, 2003, pp. 117-127. doi:10.1016/S0925-4005(03)00075-3
[15] D. Ivnitski, I. Abdel-Hamid, P. Atanasov and E. Wilkins, “Biosensors Detection of Pathogenic Bacteria,” Biosensors and Bioelectronics, Vol. 14, No. 7, 1999, pp. 599-624. doi:10.1016/S0956-5663(99)00039-1
[16] H. J. Shin, “Genetically Engineered Microbial Biosensors for in Situ Monitoring of Environmental Pollution,” Applied Microbiology and Biotechnology, Vol. 89, No. 4, 2011, pp. 867-877. doi:10.1007/s00253-010-2990-8
[17] F. Zhang and J. Keasling, “Biosensors and Their Applications in Microbial Metabolic Engineering,” Trends in Microbiology, Vol. 19, No. 7, 2011, pp. 323-329. doi:10.1016/j.tim.2011.05.003
[18] B. Pérez-López and A. Merkoci, “Nanomaterials Based Biosensors for Food Analysis Applications,” Trends in Food Science & Technology, Vol. 22, No. 11, 2011, pp. 625-639. doi:10.1016/j.tifs.2011.04.001
[19] P. D’Orazio, “Biosensors in Clinical Chemistry—2011 update,” Clinica Chimica Acta, Vol. 412, No. 19-20, 2011, pp. 1749-1761. doi:10.1016/j.cca.2011.06.025
[20] L. Ding, D. Du, X. J. Zhang and H. X. Ju, “Trends in Cell-Based Electrochemical Biosensors,” Current Medicinal Chemistry, Vol. 15, No. 30, 2008, pp. 3160-3170. doi:10.2174/092986708786848514
[21] S. Dhanekar and S. Jain, “Porous Silicon Biosensor: Current Status,” Biosensors and Bioelectronics, Vol. 41, No. 15, 2013, pp. 54-64. doi:10.1016/j.bios.2012.09.045
[22] N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1547-1562. doi:10.1021/cr030067f
[23] C. Kaittanis, S. Santra and J. M. Perez, “Emerging Nanotechnology-Based Strategies for the Identification of Microbial Pathogenesis,” Advanced Drug Delivery Reviews, Vol. 62, No. 4, 2010, pp. 408-423. doi:10.1016/j.addr.2009.11.013
[24] R. Andrews, D. Jacques, D. L. Qian and T. Rantell, “Multiwall Carbon Nanotubes: Synthesis and Application,” Accounts of Chemical Research, Vol. 35, No. 12, 2002, pp. 1008-1017. doi:10.1021/ar010151m
[25] M. Hnaien, S. Bourigua, F. Besseueille, J. Bausells, A. Errachid, F. Lagarde and N. Jaffrezic-Renault, “Impedimetric Microbial Biosensor Based on Single Wall Carbon Nanotube Modified Microelectrodes for Trichloroethylene Detection,” Electrochimica Acta, Vol. 56, No. 28, 2011, pp. 10353-10358. doi:10.1016/j.electacta.2011.04.041
[26] C. E. Banks, R. R. Moore, T. J. Davies and R. G. Compton, “Investigation of Modified Basal Plane Pyrolytic Graphite Electrodes: Definitive Evidence for the Electro- catalytic Properties of the Ends of Carbon Nanotubes,” Chemical Communications, Vol. 21, No. 16, 2004, pp. 1804-1805.
[27] A. Merkoci, M. Pumera, X. Llopis, B. Perez, M. Valle and S. Alegret, “New Materials for Electrochemical Sensing VI: Carbon Nanotubes,” TrAC Trends in Analytical Chemistry, Vol. 24, No. 24, 2005, pp. 826-838. doi:10.1016/j.trac.2005.03.019
[28] D. Odaci, S. Timur and A. Telefoncu, “Bacterial Sensors Based on Chitosan Matrices,” Sensors & Actuators B: Chemical, Vol. 134, No. 1, 2008, pp. 89-94. doi:10.1016/j.snb.2008.04.013
[29] P. Li, N. Lei, D. A. Sheadel, J. Xu and W. Xue, “Integration of Nanosensors into a Sealed Microchannel in a Hybrid Lab-on-a-Chip Device,” Sensors and Actuators B: Chemical, Vol. 166, No. 1, 2012, pp. 870-877. doi:10.1016/j.snb.2012.02.047
[30] L. Deng, S. Guo, M. Zhou, L. Liu, C. Liu and S. Dong, “A Silk Derived Carbon Fiber Mat Modified with Au@Pt Urchilike Nanoparticles: A New Platform as Electrochemical Microbial Biosensor,” Biosensors and Bioelectronics, Vol. 25, No. 10, 2010, pp. 2189-2193. doi:10.1016/j.bios.2010.02.005
[31] Q. Sheng, K. Luo, L. Li and J. Zheng, “Direct Electrochemistry of Glucose Oxidase Immobilized on NdPO4 Nanoparticles/Chitosan Composite Film on Glassy Carbon Electrodes and Its Biosensing Application,” Bioelectrochemistry, Vol. 74, No. 2, 2009, pp. 246-253. doi:10.1016/j.bioelechem.2008.08.007
[32] D. R. DeMarco, E. W. Saaski, D. A. McCrae and D. V. Lim, “Rapid Detection of Escherichia coli O157: H7 in Ground Beef Using a Fiber-Optic Biosensor,” Journal of Food Protection, Vol. 62, No. 7, 1999, pp. 711-716.
[33] E. Eltzov, V. Pavluchkov, M. Burstin and R. S. Marks, “Creation of a Fiber Optic Based Biosensor for Air Toxicity Monitoring,” Sensors and Actuators B: Chemical, Vol. 155, No. 2, 2011, pp. 859-867. doi:10.1016/j.snb.2011.01.062
[34] E. Eltzov, R. S. Marks, S. V. Bart, A. Wullings and M. B. Heringa, “Flow-Through Real Time Bacterial Biosensor for Toxic Compounds in Water,” Sensors and Actuators B: Chemical, Vol. 142, No. 1, 2009, pp. 11-18. doi:10.1016/j.snb.2009.08.024
[35] M. N. Velasco-Garcia, “Optical Biosensors for Probing at the Cellular Level: A Review of Recent Progress and Future Prospects,” Seminars in Cell & Developmental Biology, Vol. 20, No. 1, 2009, pp. 27-33. doi:10.1016/j.semcdb.2009.01.013
[36] X. Xu and Y. Ying, “Microbial Biosensors for Environmental Monitoring and Food Analysis,” Food Reviews International, Vol. 27, No. 3, 2011, pp. 300-329.
[37] J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski and D. J. S. Birch, “In vivo Glucose Monitoring: The Clinical Reality and the Promise,” Biosensors and Bioelectronics, Vol. 20, No. 10, 2005, pp. 2555-2565. doi:10.1016/j.bios.2004.10.002
[38] C. Tani, K. Inoue, Y. Tani, M. Harunur-Rashid, N. Azuma, S. Ueda, K. Yoshida and I. Maeda, “Sensitive Fluorescent Microplate Bioassay Using Re-combinant Escherichia coli with Multiple Promoter-Reporter Units in Tandem for Detection of Arsenic,” Journal of Bioscience and Bioengineering, Vol. 108, No. 5, 2009, pp. 414- 420. doi:10.1016/j.jbiosc.2009.05.014
[39] J. Garcia-Alonso, G. M. Greenway, J. D. Hardege and S. J. Haswell, “A Prototype Microfluidic Chip Using Fluorescent Yeast for Detection of Toxic Compounds,” Bionsensor and Bioelectronics, Vol. 24, No. 5, 2009, pp. 1508-1511. doi:10.1016/j.bios.2008.07.074
[40] R. Daniel, R. Almog, A. Ron, S. Belkin and Y. S. Dianmand, “Modeling and Measurement of a Whole-Cell Bioluminescent Biosensor Based on a Single Photon Avalanche Diode,” Biosensors and Bioelectronics, Vol. 24, No. 4, 2008, pp. 882-887. doi:10.1016/j.bios.2008.07.026
[41] G. Kuncova, J. Pazlarova, A. Hlavata, S. Ripp and G. S. Sayler, “Bioluminescent Bioreporter Pseudomonas putida TVA8 as a Detector of Water Pollution. Operational Conditions and Selectivity of Free Cells Sensor,” Ecological Indicators, Vol. 11, No. 3, 2011, pp. 882-887. doi:10.1016/j.ecolind.2010.12.001
[42] J. Kumar, S. K. Jhaadn and S. F. D’Souza, “Optical Microbial Biosensor for Detection of Methyl Parathion Pesticide Using Flavobacterium sp. Whole Cells Adsorbed on Glass Fiber Filters as Disposable Biocomponent,” Biosensors and Bioelectronics, Vol. 21, No. 11, 2006, pp. 2100-2105. doi:10.1016/j.bios.2005.10.012
[43] J. Kumar and S. F. D’Souza, “An Optical Microbial Biosensor for Detection of Methyl Parathion Using Sphingomonas sp. Immobilized on Microplate as a Reusable Biocomponent,” Biosensors and Bioelectronics, Vol. 26, No. 4, 2010, pp. 1292-1296. doi:10.1016/j.bios.2010.07.016
[44] J. Kumar and S. F. D’Souza, “Immobilization of Microbial Cells on Inner Epidermis of Onion Bulb Scale for Biosensor Application,” Biosensors and Bioelectronics, Vol. 26, No. 11, 2011, pp. 4399-4404. doi:10.1016/j.bios.2011.04.049
[45] S. Choi and J. Chae, “An Array of Microliter-Sized Microbial Fuel Cells Generating 100 μW of Power,” Sensors & Actuators A: Physical, Vol. 177, No. 7, 2012, pp. 10-15. doi:10.1016/j.sna.2011.07.020
[46] D. Dávila, J. P. Esquivel, N. Sabate and J. Mas, “Silicon-Based Microfabricated Microbial Fuel Cell Toxicity Sensor,” Biosensors and Bioelectronics, Vol. 26, No. 5, 2011, pp. 2426-2430. doi:10.1016/j.bios.2010.10.025
[47] L. Peixoto, B. Min, G. Martins, A. G. Brito, P. Kroff, P. Parpot, I. Angelidaki and R. Nogueira, “In Situ Microbial Fuel Cell-Based Biosensor for Organic Carbon,” Bioelectrochemistry, Vol. 81, No. 2, 2011, pp. 99-103. doi:10.1016/j.bioelechem.2011.02.002
[48] A. Kumlanghan, J. Liu, P. Thavarungkul, P. Kanatharana and B. Mattiasson, “Microbial Fuel Cell-Based Biosensor for Fast Analysis of Biodegradable Organic Matter,” Biosensors and Bioelectronics, Vol. 22, No. 12, 2007, pp. 2939-2944. doi:10.1016/j.bios.2006.12.014
[49] Y. Zhang and I. Angelidaki, “A Simple and Rapid Method for Monitoring Dissolved Oxygen in Water with a Submersible Microbial Fuel Cell (SBMFC),” Biosensors and Bioelectronics, Vol. 38, No. 1, 2012, pp. 189-194. doi:10.1016/j.bios.2012.05.032
[50] M. Di Lorenzo, T. P. Curtis, I. M. Head and K. Scott, “A Single-Chamber Microbial Fuel Cell as a Biosensor for Wastewaters,” Water Research, Vol. 43, No. 13, 2009, pp. 3145-3154. doi:10.1016/j.watres.2009.01.005
[51] Z. Liu, J. Liu, S. Zhang, X. Xing and Z. Su, “Microbial Fuel Cell Based Biosensor for in situ Monitoring of Anaerobic Digestion Process,” Bioresource Technology, Vol. 102, No. 22, 2011, pp. 10221-10229. doi:10.1016/j.biortech.2011.08.053
[52] O. Modin and B. Wilen, “A Novel Bioelectrochemical BOD Sensor Operating with Voltage Input,” Water Research, Vol. 46, No. 18, 2012, pp. 6113-6120. doi:10.1016/j.watres.2012.08.042
[53] I. Gammoudi, H. Tarbague, A. Othmane, D. Moynet, D. Rebiere, R. Kalfat and C. Dejous, “Love-Wave Bacteria-Based Sensor for the Detection of Heavy Metal Toxicity in Liquid Medium,” Biosensors and Bioelectronics, Vol. 26, No. 4, 2010, pp. 1723-1726. doi:10.1016/j.bios.2010.07.118
[54] A. Ivask, T. Rolova and A. Kahru, “A Suite of Recombinant Luminescent Bacterial Strains for the Quantification of Bioavailable Heavy Metals and Toxicity Testing,” BMC Biotechnology, Vol. 9, 2009, pp. 41-55. doi:10.1186/1472-6750-9-41
[55] S. Ramanathan, M. Ensor and S. Daunert, “Bacterial Biosensors for Monitoring Toxic Metals,” Trends in Biotechnology, Vol. 15, No. 12, 1997, pp. 500-506. doi:10.1016/S0167-7799(97)01120-7
[56] J. Singh and S. K. Mittal, “Chlorella sp. Based Biosensor for Selective Determination of Mercury in Presence of Silver Ions,” Sensors and Actuators B: Chemical, Vol. 165, No. 1, 2012, pp. 48-52. doi:10.1016/j.snb.2012.02.009
[57] Y. Yong and J. Zhong, “A Genetically Engineered Whole-Cell Pigment-Based Bacterial Biosensing System for Quantification of N-Butyryl Homoserine Lactone Quorum Sensing Signal,” Biosensors and Bioelectronics, Vol. 25, No. 1, 2009, pp. 41-47. doi:10.1016/j.bios.2009.06.010
[58] S. Ravikumar, I. Ganesh, I. Yoo and S. Hong, “Construction of a Bacterial Biosensor for Zinc and Copper and Its Application to the Development of Multifunctional Heavy Metal Adsorption Bacteria,” Process Biochemistry, Vol. 47, No. 5, 2012, pp. 758-765. doi:10.1016/j.procbio.2012.02.007
[59] P. Liu, Q. Huang and W. Chen, “Construction and Application of a Zinc-Specific Biosensor for Assessing the Immobilization and Bioavailability of Zinc in Different Soils,” Environmental Pollution, Vol. 164, 2012, pp. 66-72. doi:10.1016/j.envpol.2012.01.023
[60] K. Vijayaraghavan and Y.-S. Yun, “Bacterial Biosorbents and Biosorption,” Biotechnology Advances, Vol. 26, No. 3, 2008, pp. 266-291. doi:10.1016/j.biotechadv.2008.02.002
[61] M. Yüce, H. Nazir and G. D?nmez, “Utilization of Heat-Dried Pseudomonas aeruginosa Biomass for Voltammetric Determination of Pb(II),” New Biotechnology, Vol. 28, No. 4, 2011, pp. 356-361. doi:10.1016/j.nbt.2010.11.005
[62] C. Liu, D. Yong, D. Yu and S. Dong, “Cell-Based Biosensor for Measurement of Phenol and Nitrophenols Toxicity,” Talanta, Vol. 84, No. 3, 2011, pp. 766-770. doi:10.1016/j.talanta.2011.02.006
[63] P. R. G. Barrocas, W. M. Landing and R. J. M. Hudson, “Assessment of Mercury(II) Bioavailability Using a Bioluminescent Bacterial Biosensor: Practical and Theoretical Challenges,” Journal of Environmental Sciences, Vol. 22, No. 8, 2010, pp. 1137-1143. doi:10.1016/S1001-0742(09)60229-1
[64] S. Alpat, S. K. Aplat, B. H. Cadirci, I. Yasa and A. Telefoncu, “A Novel Microbial Biosensor Based on Circinella sp. Modified Carbon Paste Electrode and Its Voltammetric Application,” Sensor & Actuators B: Chemical, Vol. 134, No. 1, 2008, pp. 175-181. doi:10.1016/j.snb.2008.04.044
[65] M. Yüce, H. Nazir and G. D?nmez, “A Voltammetric Rhodotorula mucilaginosa Modified Microbial Biosensor for Cu(II) Determination,” Bioelectrochemistry, Vol. 79, No. 1, 2010, pp. 66-70. doi:10.1016/j.bioelechem.2009.11.003
[66] M. Yüce, H. Nazir and G. D?nmez, “Using of Rhizopus arrhizus as a Sensor Modifying Component for Determination of Pb(II) in Aqueous Media by Voltammetry,” Bioresource Technology, Vol. 101, No. 19, 2010, pp. 7551-7555. doi:10.1016/j.biortech.2010.04.099
[67] M. Yüce, H. Nazir and G. D?nmez, “An Advanced Investigation on a New Algal Sensor Determining Pb(II) Ions from Aqueous Media,” Biosensor and Bioelectronics, Vol. 26, No. 2, 2010, pp. 321-326. doi:10.1016/j.bios.2010.08.022
[68] N. Stein, H. V. M. Hamelers and C. N. J. Buisman, “On-Line Detection of Toxic Components Using a Microbial Fuel Cell-Based Biosensor,” Sensors and Actuators B: Chemical, Vol. 22, No. 9, 2012, pp. 1663, 1-7.
[69] A. Gurung, S. Oh, K. D. Kim and B. Shin, “Semi-Continuous Detection of Toxic Hexavalent Chromium Using a Sulfur-Oxidizing Bacteria Biosensor,” Journal of Environmental Management, Vol. 106, No. 15, 2012, pp. 110- 112. doi:10.1016/j.jenvman.2012.04.010
[70] D. Yong, C. Liu, D. Yu and S. Dong, “A Sensitive, Rapid and Inexpensive Way to Assay Pesticide Toxicity Based on Electrochemical Biosensor,” Talanta, Vol. 84, No. 1, 2011, pp. 7-12. doi:10.1016/j.talanta.2010.11.012
[71] G. Chee, “Biodegradation Analyses of Trichloroethylene (TCE) by Bacteria and Its Use for Biosensing of TCE,” Talanta, Vol. 85, No. 4, 2011, pp. 1778-1782. doi:10.1016/j.talanta.2011.07.002
[72] R. M. Banik, Mayank, R. Prakash and S. N. Upadhyay, “Microbial Biosensor Based on Whole Cell of Pseudomonas sp. for Online Measurement of p-Nitrophenol,” Sensors and Actuators B: Chemical, Vol. 131, No. 1, 2008, pp. 295-300. doi:10.1016/j.snb.2007.11.022
[73] M. Stoytcheva, R. Zlatev, Z. Velkova, B. Valdex, M. Ovalle and L. Petkov, “Hybrid Electrochemical Biosensor for Organophosphorus Pesticides Quantification,” Electrochemica Acta, Vol. 54, No. 6, 2009, pp. 1721-1727. doi:10.1016/j.electacta.2008.09.063
[74] S. K. Jha, M. Kanungo, A. Nath and S. F. D’Souza, “Entrapment of Live Microbial Cells in Electropolymerized Polyaniline and Their Use as Urea Biosensor,” Biosensors and Bioelectronics, Vol. 24, No. 8, 2009, pp. 2637-2642. doi:10.1016/j.bios.2009.01.024
[75] L. D. Mello and L. T. Kubota, “Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries,” Food Chemistry, Vol. 77, No. 2, 2002, pp. 237-256. doi:10.1016/S0308-8146(02)00104-8
[76] Y. Kim, J. Park and H. Jung, “An Impedimetric Biosensor for Real-Time Monitoring of Bacterial Growth in a Microbial Fermentor,” Sensor & Actuators B: Chemical, Vol. 138, No. 1, 2009, pp. 270-277. doi:10.1016/j.snb.2009.01.034
[77] E. Akyilmaz and E. Dinckaya, “An Amperometric Microbial Biosensor Development Based Candida tropicalis Yeast Cells for Sensitive Determination of Ethanol,” Biosensors and Bioelectronics, Vol. 20, No. 7, 2005, pp. 1263-1269. doi:10.1016/j.bios.2004.04.010
[78] M. Valach, J. Katrlik, E. Sturdik and P. Gemeiner, “Ethanol Gluconobacter Biosensor Designed for Flow Injection Analysis: Application in Ethanol Fermentation Off-Line Monitoring,” Sensors & Actuators B: Chemical, Vol. 138, No. 2, 2009, pp. 581-586. doi:10.1016/j.snb.2009.02.017
[79] G. M. Wen, S. M. Shuang, C. Dong and M. F. Choi, “An Ethanol Biosensor Based on a Bacterial Cell-Immobilized Eggshell Membrane,” Chinese Chemical Letter, Vol. 23, No. 4, 2012, pp. 481-483. doi:10.1016/j.cclet.2012.01.026
[80] V. R. S. Babu, S. Patra, N. G. Karanth, M. A. Kumar and M. S. Thakur, “Development of a Biosensor for Caffeine,” Analytica Chimica Acta, Vol. 582, No. 2, 2007, pp. 329-334. doi:10.1016/j.aca.2006.09.017
[81] L. Li, B. Liang, F. Li, J. Shi, M. Mascini, Q. Lang and A. Liu, “Co-Immobilization of Glucose Oxidase and Xylose Dehydrogenase Displayed Whole Cell on Multiwalled Carbon Nanotube Nanocomposite Films Modified Electrode for Simultaneous Voltammetric Detection of d-Glucose and d-Xylose,” Biosensors and Bioelectronics, Vol. 42, No. 12, 2013, pp. 156-162. doi:10.1016/j.bios.2012.10.062
[82] W. L. Bryden, “Mycotoxins in the Food Chain: Human Health Implications,” Asia Pacific Journal of Clinical Nutrition, Vol. 16, Suppl. 1, 2007, pp. 95-101.
[83] A. Valimaa, A. T. Kivisto, P. I. Leskinen and M. T. Karp, “A Novel Biosensor for the Detection of Zearalenone Family Mycotoxins in Milk,” Journal of Microbiological Methods, Vol. 80, No. 1, 2010, pp. 44-48. doi:10.1016/j.mimet.2009.10.017
[84] H. Nakamura, R. Tanaka, K. Suzuki, M. Yataka and Y. Mogi, “A Direct Determination Method for Ethanol Concentrations in Alcoholic Beverages Employing a Eukar- yote Double-Mediator System,” Food Chemistry, Vol. 117, No. 3, 2009, pp. 509-513. doi:10.1016/j.foodchem.2009.04.026
[85] M. Hammerle, K. Hilgert, A. H. Marcus and M. Ralf, “Analysis of Volatile Alcohols in Apple Juices by an Electrochemical Biosensor Measuring in the Headspace Above the Liquid,” Sensor & Actuators B: Chemical, Vol. 158, No. 1, 2011, pp. 313-318. doi:10.1016/j.snb.2011.06.026
[86] E. Akyilmaz, M. Turemis and I. Yasa, “Voltammetric Determination of Epinephrine by White Rot Fungi (Phanerochaete chrysosporium ME446) Cells Based Microbial Biosensor,” Biosensors an Bioelectronics, Vol. 26, No. 5, 2011, pp. 2590-2594. doi:10.1016/j.bios.2010.11.012
[87] T. Curtis, R. M. Z. G. Naal, C. Batt, J. Tabb and D. Holowka, “Development of a Mast Cell-Based Biosensor,” Biosensors and Bioelectronics, Vol. 23, No.7, 2008, pp. 1024-1031. doi:10.1016/j.bios.2007.10.007
[88] Z. Chen, M. Lu, D. Zou and H. Wang, “An E. coli SOS- EGFP Biosensor for Fast and Sensitive Detection of DNA Damaging Agents,” Journal of Environmental Science, Vol. 24, No. 3, 2012, pp. 541-549. doi:10.1016/S1001-0742(11)60722-5
[89] S. Tuncagil, D. Odaci, E. Yildiz, S. Timur and L. Toppare, “Design of a Microbial Sensor Using Conducting Polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) Benzenamine,” Sen-sors &Acturators B: Chemical, Vol. 137, No. 1, 2009, pp. 42-47. doi:10.1016/j.snb.2008.10.067
[90] E. D. Leo, L. Galluccio, A. Lombardo and G. Morabito, “Networked Labs-on-a-Chip (NLoC): Introducing Net- working Technologies in Microfluidic Systems,” Nano Communication Networks, Vol. 3, No. 4, 2012, pp. 217-228. doi:10.1016/j.nancom.2012.09.007
[91] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang and C. M. Lieber, “Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays,” Nature Biotechnology, Vol. 23, 2005, pp. 1294-1301. doi:10.1038/nbt1138
[92] L. Yang, M. Li, Y. Qu, Z. Dong and W. J. Li, “Carbon Nanotube-Sensor-Integrated Microfluidic Platform for Real-Time Chemical Concentration Detection,” Electrophoresis, Vol. 30, No. 18, 2009, pp. 3198-3205. doi:10.1002/elps.200900126
[93] A. Biedermann, S. Bozza and F. Taroni, “Decision Theoretic Properties of Forensic Identification: Underlying Logic and Argumentative Implications,” Forensic Science International, Vol. 177, No. 2-3, 2008, pp. 120-132. doi:10.1016/j.forsciint.2007.11.008
[94] M. J. Saks, “Forensic Identification: From a Faith-Based ‘Science’ to a Scientific Science,” Forensic Science International, Vol. 201, No. 1-3, 2010, pp. 14-17. doi:10.1016/j.forsciint.2010.03.014
[95] K. Virkler and I. K. Lednev, “Raman Spectroscopic Signature of Semen and Its Potential Application to Forensic Body Fluid Identification,” Forensic Science International, Vol. 193, No. 1-3, 2009, pp. 56-62. doi:10.1016/j.forsciint.2009.09.005
[96] Z. Wang, J. Zhang, H. Luo, Y. Ye, J. Yan and Y. Hou, “Screening and Confirmation of MicroRNA Markers for Forensic Body Fluid Identification,” Forensic Science International: Genetics, Vol. 7, No. 1, 2013, pp. 116-123. doi:10.1016/j.fsigen.2012.07.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.