Effect of the Application of Produced Water on the Growth, the Concentration of Minerals and Toxic Compounds in Tomato under Greenhouse

Abstract

During the production of petroleum and gas a by-product, known as congenital water, is obtained, which varies in composition depending on the geological formation from which it is extracted. In the industrial process its composition is modified and then it is known as “produced water”. These waters can contain high concentrations of mineral salts that can potentially be used for crop fertilization. The aim of this study was to evaluate the effects of the application of produced water on the mineral contents of the plants and levels of BTEX and TPH in the fruits of greenhouse tomato cultivation. The produced waters used were derived from gas producing zone of Sabinas-Piedras Negras in northern Mexico. These waters were analyzed according to NOM-143-SEMARNAT-2003. Waters from three different stations, (Buena Suerte, Forasteros and Monclova 1), were mixed with fresh water to obtain the treatment waters used. As a control, we used a complete Steiner solution. The results showed that the produced waters modified the absorption of essential minerals in tomato plants; it was observed that the mineral concentration in plant tissues was highest in the control plants, except for Na, in which the plants irrigated with produced water had the highest concentrations. The treatments with produced waters also affected negatively the root length, leaf dry weight, stem dry weight, number of fruits per plant, and the dry weight of the fruits.

Share and Cite:

J. Martel-Valles, A. Benavides-Mendoza, L. Valdez-Aguilar, A. Juárez-Maldonado and N. Ruiz-Torres, "Effect of the Application of Produced Water on the Growth, the Concentration of Minerals and Toxic Compounds in Tomato under Greenhouse," Journal of Environmental Protection, Vol. 4 No. 7A, 2013, pp. 138-146. doi: 10.4236/jep.2013.47A016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. D. Leet and S. Judson, “Fundamentos de Geología Física,” Editorial Limusa-Wiley, México D.F., 1974.
[2] J. Llamas, “Hidrología General. Principios y Aplicaciones,” Editorial Universitaria del País Vasco, Bilbao, 1993.
[3] SEMARNAT, “Norma Oficial Mexicana NOM-143SEMARNAT-2003, Que Establece las Especificaciones Ambientales para el Manejo de agua Congénita Asociada a Hidrocarburos,” Secretaría de Medio Ambiente Recursos Naturales y Pesca, Diario Oficial de la Federación, 2005.
[4] PEMEX, “Informe de Responsabilidad Social,” 2010. http://www.pemex.com/informes/pdfs/descargas/pemex_irs_completo_2011.pdf
[5] CNH, “Documento Técnico 1 (DT-1), Factores de Recuperación de Aceite y gas en México,” 2010. http://www.cnh.gob.mx/_docs/DOCUMENTOTECNICO1FINAL.pdf
[6] R. Lee, R. Seright, M. Hightower, A. Sattler, M. Cather, B. McPherson, L. Wrotenbery, D. Martin and M. Whitworth, “Strategies for Produced Water Handling in New México,” 2002. http://wrri.nmsu.edu/publish/watcon/proc47/lee.pdf
[7] J. A. Veil, M. G. Puder, D. Elcock and R. J. Redweik Jr., “A White Paper Describing Produced Water from Production of Crude Oil Natural Gas and Coal Bed Methane,” 2004. http://www.evs.anl.gov/pub/dsp_detail.cfmPubID=1715
[8] C. E. Clark and J. A. Veil, “Produced Water Volumes and Management Practices in the United States,” 2009. http://www.ipd.anl.gov/anlpubs/2009/07/64622.pdf
[9] L. Manfra, C. Maggi, J. Bianchi, M. Mannozzi, O. Faraponova, L. Mariani, F. Onorati, A. Tornambè, C. VirnoLamberti and E. Magaletti, “Toxicity Evaluation of Produced Formation Waters after Filtration Treatment,” Natural Science, Vol. 2, No. 1, 2010, pp. 33-40. doi:10.4236/ns.2010.21005
[10] A. D. Chave and C. S. Cox, “Controlled Electromagnetic Sources for Measuring Electrical Conductivity beneath the Oceans,” Journal of Geophysical Research, Vol. 87, No. B7, 1982, pp. 5327-5338.
[11] A. Tinu and L. Amit, “Socio-Economic & Technical Assessment of Photovoltaic Powered Membrane Desalination Processes for India,” Desalination, Vol. 268, No. 1-3, 2011, pp. 238-248. doi:10.1016/j.desal.2010.10.035
[12] ARPEL, “Disposición y Tratamiento de agua Producida. Asociación Regional de Empresas de Petróleo y Gas Natural en Latinoamérica y el Caribe,” Alberta, 2012, 111 p.
[13] FAO, “Water Quality for Agriculture,” 1994. http://www.fao.org/DOCREP/003/T0234E/T0234E00.htm 07/05/11
[14] GWPRF, Ground Water Protection Research Foundation, US Department of Energy, and U.S. Bureau of Land Management, “Handbook on Coal Bed Methane Produced Water: Management and Beneficial Use Alternatives,” 2003. http://www.ela-iet.com/EMD/CoalBedMethaneWater.pdf
[15] R. P. W. M. Jacobs, E. Grant, J. Kwant, J. M. Marqueine and E. Mentzer, “The Composition of Produced Water from Shell Operated Oil and Gas Production in the North Sea,” In: J. P. Ray and F. R. Englehart, Eds., Produced Water. Technological/Environmental Issues and Solutions, Plenum Press, New York, 1992, pp. 13-21. doi:10.1007/978-1-4615-2902-6_2
[16] DOE, “Produced Water Management Technology Descriptions. Fact Sheet-Agricultural Use,” 2012. http://www.netl.doe.gov/technologies/pwmis/techdesc/aguse/index.html
[17] NPC, “Management of Produced Water from Oil and Gas Wells,” 2011. http://www.npc.org/Prudent_DevelopmentTopic_Papers/217_ Management_of_Produced_Water_Paper.pdf
[18] A. A. Steiner, “A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition,” Plant Soil, Vol. 15, No. 2, 1961, pp. 134-154. doi:10.1007/BF01347224
[19] AOAC, “Official Methods of Analysis of the Association of Official Analytical Chemists,” Association of Official Analytical Chemists, Washington DC, 1980, 1018 p.
[20] US EPA 8015B, “Nonhalogenated Organics Using GC/ FID,” EPA, Revision 2, 1996, 28 p.
[21] US EPA-8260C, “Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS),” EPA, Revision 3, 2006, 92 p.
[22] SAS JMP “User’s guide. Versión 5.0.1,” SAS Institute Inc., 2002. http://support.sas.com/archive/installation/admindoc/installation/JMP501AdminGuide.pdf
[23] G. Adam and H. Duncan, “Influence of Diesel Fuel on Seed Germination,” Environmental Pollution, Vol. 120, No. 2, 2002, pp. 363-370. doi:10.1016/S0269-7491(02)00119-7
[24] E. E. Quinones-Aguilar, R. Ferrera-Cerrato, F. GaviReyes, L. Fernández-Linares, R. Rodríguez-Vázquez and A. Alarcón, “Emergence and Growth of Maize in a Crude Oil Polluted Soil,” Agrociencia, Vol. 37, 2003, pp. 585-594.
[25] SEMARNAT, Norma Oficial Mexicana NOM-138-Semarnat/SS, “Límites Máximos Permisibles de Hidrocarburos en suelos y las Especificaciones para su Caracterización y Remediación,” Secretaría de Medio Ambiente Recursos Naturales y Pesca, Diario Oficial de la Federación, 2003.
[26] R. Powell, “The Use of Plants as ‘Field’ Biomonitors,” In: W. Wang, J. Gorsuch and J. Hughes, Eds., Plants for Environmental Studies, EEUU, CRC Press, Boca Raton, 1997, pp. 47-61. doi:10.1201/9781420048711.ch12
[27] SEMARNAT, Norma Oficial Mexicana NOM-001ECOL, “Que Establece los líMites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales,” Secretaría de Medio Ambiente, Recursos Naturales y Pesca, Diario Oficial de la Federación, 1996.
[28] C. De Kreij and T. H. J. M. Van Den Berg, “Nutrient Uptake, Production and Quality of Rosa Hybrida in Rockwool as Affected by Electrical Conductivity of the Nutrient Solution,” In: M. L. van Beusichem, Ed., Plant Nutrition-Physiology and Applications, Springer Netherlands, Wageningen, 1990, pp. 519-523. doi:10.1007/978-94-009-0585-6_86
[29] M. Alkio, T. M. Tabuchi, X. Wang and A. Colón-Carmona, “Stress Responses to Polycyclic Aromatic Hydrocarbons in Arabidopsis Include Growth Inhibition and Hypersensitive Response-Like Symptoms,” Journal of Experimental Botany, Vol. 56, No. 421, 2005, pp. 2983-2994. doi:10.1093/jxb/eri295
[30] L. Jackson and J. Myers, “Alternative Use of Produced Water in Aquaculture and Hydroponic Systems at Naval Petroleum Reserve No. 3,” 2002. http://www.gwpc.org/e-Library/Proceedings/library_proceedings_main.htm
[31] V. Chinnusamy, A. Jagendorf and Z. Jian-Kang, “Understanding and Improving Salt Tolerance in Plants,” Crop Science, Vol. 45, No. 2, 2005, pp. 437-448. doi:10.2135/cropsci2005.0437
[32] S. Yokoi, R. A. Bressan and P. M. Hasegawa, “Salt Stress Tolerance of Plants,” Center for Environmental Stress Physiology, Purdue University, JIRCAS Working Report, 2002, pp. 25-33.
[33] D. P. Arfsten, D. J. Schaeffer and D. C. Mulveny, “The Effects of Near Ultraviolet Radiation on the Toxic Effects of Polycyclic Aromatic Hydrocarbons in Animals and Plants,” Ecotoxicology and Environmental Safety, Vol. 22, No. 1, 1996, pp. 1-24. doi:10.1006/eesa.1996.0001
[34] J. M. Navas, M. Babín, S. Casado, C. Fernández and J. V. Tarazona, “The Prestige Oil Spill: A Laboratory Study about the Toxicity of the Water-Soluble Fraction of the Fuel Oil,” Marine Environmental Research, Vol. 62, No. 1, 2006, pp. S352-S355. doi:10.1016/j.marenvres.2006.04.026
[35] K. Srogi, “Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review,” Environmental Chemistry Letters, Vol. 5, No. 4, 2007, pp. 169-195. doi:10.1007/s10311-007-0095-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.